首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Holocene Alluvial Chronology of One Tree Creek, Southern Alberta, Canada   总被引:1,自引:0,他引:1  
An alluvial chronology for the One Tree Creek basin, a southern tributary of the Red Deer River in southern Alberta, is reconstructed using terrace and palaeochannel remnants and associated radiocarbon dated bones. Prior to the development of One Tree Creek as a northeastward flowing tributary, the prairie surface was scoured by proglacial floodwaters decanting from Glacial Lake Bassano/Patricia in the west. Radiocarbon dates on bones from the bedload gravels in palaeochannels provide a morphochronology of Holocene stream incision. Tentative average incision rates for the middle and upper reaches are calculated at 0.34–0.38 cm a‐1 since 2.8 ka BP and 0.80 – 1.60 cm and 0.81 – 0.96 cm a‐1 for the two periods of 1870 to 1230 BP and 1230 BP to modern respectively. Terraces and palaeochannels dating to the period of highest incision (1870 BP to modern) include numerous reworked bones dating to earlier periods, indicating that fluvial downcutting triggered slope instability and terrace reworking. Although the lower bedrock reaches of the creek may have incised down to the present level of the Red Deer River during early postglacial time, the middle and upper reaches were rapidly incised into Quaternary sediments during the late Holocene when climatic conditions were more humid.  相似文献   

2.
Mapping of late Quaternary geomorphic surfaces, and analysis of the soils and sediments buried within them, provides evidence for the history of a small study area within the Red Valley physiographic zone, Black Hills, South Dakota. Geomorphic thresholds for this grassland system are correlated with periods of major climatic change. Well-developed soils dating to the late Pleistocene and early Holocene (14,000 to 9000 yr B.P.) suggest more mesic conditions and geomorphic stability. A mid-Holocene Altithermal (ca. 8000 to 4500 yr B.P.) denudation almost completely stripped the landscape of earlier Holocene sediments and soils. A prolonged, mid-Holocene (ca. 4500 to 3600 yr B.P.) mesic period of landscape stability and soil development followed, but was abruptly terminated around 3600 yr BP. Late Holocene conditions approached stability about 1200 yr BP. After this time, alluvial terrace surfaces remained stable, while alluvial fans experienced periods of stability punctuated by midslope aggradation.  相似文献   

3.
In this study, a 6 m long core (16,000 BP) at the center of the dry Lake Yiema, a closed lake of Shiyang River drainage in Minqin Basin of the arid northwestern China, was retrieved to recover the history of climate changes and lake evolution in the area. Five radiocarbon dates on organic matter were obtained. A chronological sequence is established based on these five dates and other dates from nearby sites. Magnetic susceptibility, particle size and chemical composition were analysized for climate proxies. The proxies indicate that a drier climate prevailed in the Shiyang River drainage during the last glacial. Lake Yiema was dry and eolian sand covered most part of the lake basin. During the early and middle Holocene, a moister climate prevailed in the drainage. Climate became dry stepwise with an abrupt transition from one stage to another during the entire Holocene and became driest since about 4,200 BP. Maximum dry climate spells occurred at about 12,000-10,000 BP and after about 4,200 BP. A dry climate event also existed at about 7,600 BP. Periodical sand storms with about 400-yr cycle happened during the middle Holocene. Desiccation processes of the lake started at 4,200 BP, and were accelerated since the last 2,500 yrs by the inflow water diversion for agriculture irrigation. During the past 2,500 yrs, the lake size has been closed associated with the human population, implying that the human impact has been accelerating the lake desiccation superimposed on the natural climate deterioration.  相似文献   

4.
In arid mountain areas, the dating and correlation of alluvial depositional surfaces is often uncertain. Especially in regions where the geomorphology is not well known, surface modification by the development of soil and desert pavement may allow the correlation of geomorphic surfaces and estimation of at least their relative ages. Pleistocene wadi terraces and associated alluvial fans occur in Wadi Al-Bih, U.A.E. and Oman, for which correlations and age relationships are not known. Three age-related groups of fans and terraces have been identified and mapped on the basis of their morphostratigraphic relationships. Deposition of the oldest terrace sediments and associated fans followed a long period of sustained incision after Miocene uplift of the region. The younger two groups of terraces and fans are inset within the older group. To identify the gross effects of pavement development, comparisons have been made between terrace surface and subsurface particle-size distributions. The older terraces have finer surface sediments and a greater contrast between finer surface and subsurface sediments than the younger terraces. This reflects the degree of pavement development. Particle size on the fan surfaces is comparable with that on the equivalent terrace surfaces. Criteria for the classification of pavements were developed based on clast fracturing and angularity, size, sorting, packing, and surface texture, from which a simple index of pavement development has been derived. Other properties, rock varnish and weathering characteristics, were also recorded; but these proved to be less discriminatory than pavement characteristics. The pavement data have been augmented by observations on soils. Detailed studies of pavements on terraces (8 sites, 12 samples covering the three age groups) and fans (5 sites, 10 samples covering the three age groups) allow differentiation between age-groups. The three terraces show three different age-related pavement types, expressed by differences in the pavement development index. Weakly-developed pavements (little fracturing, sub-rounded clasts, some modification of the depositional fabric, incipient soil development, stage I CaCO3 accumulation) occur on the youngest terrace and fan surfaces. Moderately-developed pavements (clast fracturing, sub-angular clasts, moderate sorting and packing, deeper soil development, stage II CaCO3 accumulation) occur on the middle terrace and fan surfaces. Well-developed pavements (complete clast fracturing into small angular fragments, mature sorting and packing of the pavement surface, deep soil development with strong horizonation, stage III CaCO3 accumulation) occur on the highest terrace and oldest fan surfaces. There are minor differences between the youngest pavements on terraces and fans, which reflect initial sedimentological differences. These differences become less as the pavements develop. On the basis of comparative studies, the oldest terrace is estimated to date from sometime prior to ca. 100 ka BP, the second terrace and the most extensive fan surface from the Late Pleistocene, and the youngest terrace and fan phase from the Latest Pleistocene or Early Holocene.  相似文献   

5.
The ancient agriculture in the southern Levant is very much dependant on the interaction between the geological and geomorphological characteristics of the desert environment and the arid climatic conditions. Field observations and luminescence dating in the Negev Highlands, southern Israel, indicate that deposition of fluvio-loess sediments occurred mainly during the late Pleistocene glacial period. These sediments, which were transformed into loessy soil, support a high natural biomass and have an agricultural potential. Major soil erosion started after 27 ka, exposing bedrock, increasing runoff and erosion. These feedback processes were intensified during the Holocene. Since the mid Holocene, the co-existence of soil and runoff created a unique setup which enabled the establishment of desert agriculture in the southern Levant, based on runoff-harvesting techniques. Extensive construction of stone terrace walls on top of diachronous middle–late Holocene alluvial units in the less degraded valleys led to the deposition of the anthropogenic unit, consisting of fine grained re-deposited loess as a by-product of the flood irrigation. This process contributed to soil conservation and counteracted the continuous natural soil erosion and desertification. The ability to practice desert agriculture is still preserved in the southern Levant, and historic climate changes are not required to explain the rise and fall of the great farming cultures.  相似文献   

6.
陕西扶风黄土台塬全新世成壤环境变化研究   总被引:8,自引:4,他引:4  
通过对陕西扶风全新世黄土剖面的土壤学和地层学研究、磁化率、酸碱度和粒度测定分析, 揭示了周原地区全新世成壤环境演变过程。黄土剖面中的埋藏古土壤S0形成于全新世大暖期的温湿环境中, 古土壤S0中黄土夹层(Lx)的存在, 表明6000aBP前后季风气候发生转折, 在6000~5000aBP出现一个干旱阶段, 并使得全新世大暖期分裂成为两个主要的温湿阶段。大约从3100aBP开始, 受全球降温过程的影响, 季风气候朝向干旱化方向发展, 全新世大暖期的成壤作用被黄土堆积所取代。现代表土大约从1500aBP开始发育。  相似文献   

7.
Schwarzsee is located in the western Swiss Alps, in a region that has been affected by numerous landslides during the Holocene, as evidenced by geological surveys. Lacustrine sediments were cored to a depth of 13 m. The vegetation history of the lake's catchment was reconstructed and investigated to identify possible impacts on slope stability. The pollen analyses record development of forest cover during the middle and late Holocene, and provide strong evidence for regional anthropogenic influence such as forest clearing and agricultural activity. Vegetation change is characterized by continuous landscape denudation that begins at ca. 4300 cal. yrs BP, with five distinct pulses of increased deforestation, at 3650, 2700, 1500, 900, and 450 cal. yrs BP. Each pulse can be attributed to increased human impact, recorded by the appearance or increase of specific anthropogenic indicator plant taxa. These periods of intensified deforestation also appear to be correlated with increased landslide activity in the lake's catchment and increased turbidite frequency in the sediment record. Therefore, this study gives new evidence for a strong influence of vegetation changes on slope stability during the middle and late Holocene in the western Swiss Alps, and may be used as a case study for anthropogenically induced landslide activity.  相似文献   

8.
Comparatively little is known about net aggradation on alluvial fans, despite fan construction wherever sediment-delivery rates from uplands exceed sediment-removal rates from receiving basins. In January 1983, 20 alluvial fans in the forested Cascade foothills, northwest Washington, experienced net aggradation in response to debris torrents and stream floods triggered by intense warm rains falling on antecedent snow. Five trenches were excavated to 5 m depth on the Mills Creek fan to place the 1983 event in temporal perspective. The deposits reflect normal streamflow, hyperconcentrated streamflow and debris torrent (flow) conditions. One trench revealed residues of 7 events since 1720 BP. Net rates of Holocene aggradation, based on sediments overlying late Pleistocene fluvioglacial deposits, average 0.42 m ka-1. Net rates for later Holocene time range from 2.17 m ka-1 since 1720 BP to 2.36 m ka-1 since 430 BP. These recent rates exceed the local value for the entire Holocene and rates for humid temperate fans elsewhere. This suggests that accelerated aggradation may characterize later Holocene times, a view that contrasts with the widespread belief that the later Holocene has been dominated by fan-head incision and net degradation. More comparative data are needed to test this observation. Locally, large debris-producing events in 1917 and 1983 are consistent with later Holocene recurrence intervals and thus appear to be independent of timber harvesting. [Key words: alluvial fan, debris torrent, debris flow, streamflow, Washington.]  相似文献   

9.
A stratigraphic diatom sequence is presented for the period from 13,870-9,170 cal BP from Kråkenes Lake, western Norway. Changes in species assemblages are discussed with reference to the changing environmental conditions in the Allerød, Younger Dryas, and the early Holocene and to the development of the aquatic ecosystem. The site is sensitive to acidification, and diatom-based transfer functions are applied to estimate the past pH status. The combination of rapid sediment accumulation together with an excellent calibrated radiocarbon chronology means that the rate of inferred pH change and associated increase in [H+] can be assessed and compared with recent, anthropogenically acidified situations.The Allerød diatom assemblages are dominated by benthic taxa particularly Fragilaria species, indicating an unproductive, alkaline, turbid, and immature system. Diatoms are absent in the early part of the Younger Dryas, but subsequently a sparse planktonic flora develops reflecting decreased turbidity and/or increased nutrient supply. A clear sequence of diatom assemblages is seen in the early Holocene. A short-lived peak of Stephanodiscus species indicating a period of increased nutrient availability occurred at ca. 11,500 cal BP. Throughout the early Holocene, acid-tolerant species increasingly replaced less acidophilous, circumneutral taxa.The lake became slightly more acid during the Allerød, but this was statistically insignificant in a trend test involving regression of pH or [H+] in relation to age. Diatom-inferred pH declined rapidly during the early Holocene period investigated (9,175-11,525 cal BP) with a statistically significant overall rate of 0.024 pH units per 100 yrs. This consisted of an older (ca. 11,525-10,255 cal BP) phase, where pH fell more rapidly at up to 0.095 pH units per 100 yrs; and a younger phase after ca. 10,500 cal BP where the pH fall was extremely slow (0.008 pH units per 100 yrs) and was not statistically significant.In the Allerød a combination of low catchment productivity together with disturbance, weathering, and minerogenic inwash ensured that the base-cation status remained relatively high. In the Holocene the catchment soils stabilised and base cations were sequestered by terrestrial vegetation and soil. This resulted in reduced base-cation leaching and this, together with the production of organic acids caused the lake to acidify, reaching an equilibrium by ca. 10,000 cal BP.  相似文献   

10.
Analyses of lithology, organic-matter content, magnetic susceptibility, and pollen in a sediment core from Okpilak Lake, located in the northeastern Brooks Range, provide new insights into the history of climate, landscape processes, and vegetation in northern Alaska since 14,500?cal?year BP. The late-glacial interval (>11,600?cal?year BP) featured sparse vegetation cover and the erosion of minerogenic sediment into the lake from nearby hillslopes, as evidenced by Cyperaceae-dominated pollen assemblages and high magnetic susceptibility (MS) values. Betula expanded in the early Holocene (11,600?C8,500?cal?year BP), reducing mass wasting on the landscape, as reflected by lower MS. Holocene sediments contain a series of silt- and clay-dominated layers, and given their physical characteristics and the topographic setting of the lake on the braided outwash plain of the Okpilak River, the inorganic layers are interpreted as rapidly deposited fluvial sediments, likely associated with intervals of river aggradation, changes in channel planform, and periodic overbank flow via a channel that connects the river and lake. The episodes of fluvial dynamics and aggradation appear to have been related to regional environmental variability, including a period of glacial retreat during the early Holocene, as well as glacial advances in the middle Holocene (5,500?C5,200?cal?year BP) and during the Little Ice Age (500?C400?cal?year BP). The rapid deposition of multiple inorganic layers during the early Holocene, including thick layers at 10,900?C10,000 and 9,400?C9,200?cal?year BP, suggests that it was a particularly dynamic interval of fluvial activity and landscape change.  相似文献   

11.
《Basin Research》2018,30(Z1):550-567
Floodplains, paleosols, and antecedent landforms near the apex of the Brahmaputra fan delta in north‐central Bangladesh preserve cycles of fluvial sediment deposition, erosion and weathering. Together these landforms and their associated deposits comprise morphostratigraphic units that define the river's history and have influenced its channel position and avulsion behaviour through the Late Quaternary. Previously, temporal differentiation within these units has not been sufficient to decipher their sequence of deposition, an important step in understanding the spatial pattern of migration of the Brahmaputra River. Holocene units in this region are fairly well established by radiocarbon dating of in situ organic material, but pre‐Holocene units are considered Pleistocene‐aged if organic material is dated >48 000 year BP (the limit of radiocarbon dating) or the sediments are positioned beneath a prominent paleosol, interpreted as a buried soil horizon that developed during a previous sea level lowstand. In such cases, these morphostratigraphic units have been broadly interpreted as Pleistocene without knowing their absolute depositional ages or relative evolutionary chronology. Here we use detailed sediment analysis to better differentiate morphostratigraphic units at the Brahmaputra's avulsion node, establishing the sequence of deposition and subsequent weathering of these bodies. We then test this relative chronology by luminescence dating of the sands beneath these landform surfaces. This work provides the first absolute depositional age constraints of terrace sediments for the Middle to Late Pleistocene Brahmaputra River and upper Bengal basin. The luminescence ages are complemented by detailed compositional trends in the terrace deposits, including clay mineralogy and the degree of weathering. Together, these newly dated and carefully described morphostratigraphic units reflect eustasy‐driven cycles of terrace development by way of highstand floodplain deposition and subsequent lowstand exposure and weathering, along with active tectonic deformation. Defining this Late Quaternary history of terrace development and position of the Brahmaputra River is a first step toward an integrated understanding of basin and delta evolution over multiple glacioeustatic cycles and tectonically relevant timescales.  相似文献   

12.
The post-glacial history of the Great Lakes has involved several changes in lake levels throughout the latest Pleistocene and Holocene, resulting from the changing position of the retreating Laurentide ice sheet, outlet incision and isostatic rebound. The final lowering of lake levels occurred at approximately 7600 14C yr BP, after which lake levels began to rise again to the Nipissing highstand at approximately 4700 14C yr BP. During this time of rising lake levels, black bands of iron sulfide were being formed in the sediments of all five of the Great Lakes. These bands signify suboxic to anoxic conditions, at least within the sediments and possibly at the sediment-water interface, during the middle Holocene warm interval. During this interval, the climate was warmer and drier than present, possibly resulting in the occasional absence of seasonal turnover in the lakes. We examined a series of piston cores from northern Lakes Michigan and Huron and found that the black bands are correlatable among cores taken from within the same basin. The observation that the banding can be correlated suggests a basin-wide cause, near-bottom or sub-bottom anoxia in the northern Michigan and northern Huron sediments during the mid-Holocene warm period. The sedimentary and geochemical processes in the Great Lakes during the middle Holocene warm interval are good indicators of possible future scenarios for the lakes as a result of global warming, as 21st-century temperatures are predicted to reach similar levels due to increased concentrations of greenhouse gases.  相似文献   

13.
Sedimentological, geochemical and magnetic data in a ~ 7-m sequence from Marboré Lake (2612 m asl, central Pyrenees) provide information about environmental variability since the last glacier retreat (14.6 cal ka BP) in high-altitude Pyrenean environments. The sediment sequence is composed of millimeter- to centimeter-thick rhythmites made of finer greyish laminae and coarser-grain, carbonate-bearing laminae arranged in varied patterns throughout the sequence. Finer laminae are interpreted as deposition during periods of predominantly ice-covered conditions, whereas coarser, carbonate-bearing sediments reflect periods of higher runoff. The age model, based on 13 14C dates and a reservoir effect assessed with 210Pb and 137Cs, is coherent with known synchronous vegetation changes across the Pyrenees. Warmer intervals such as GI-1 (14.6–12.8 cal ka BP, Bølling/Allerød period), 10.4–8.2 cal ka BP in the Early Holocene, 7.5–5.2 cal ka BP in the Mid Holocene and the Medieval Climate Anomaly (AD 900–1300), are characterized by peaks in productivity and higher carbonate preservation. Deposition during colder periods such as GS-1 (12.8–11.7 cal ka BP), the Neoglacial (ca. 5.2–3.5 cal ka BP) and the Little Ice Age (last 400 years) show an increase in finer laminae. The presence of magnetite throughout the whole section suggests that Marboré Lake maintained predominantly oxic conditions since its formation. Changes in magnetic properties and the increase in magnetite from 3.5 cal ka BP to present, however, indicate a more oxic environment at the lake bottom during the last few millennia. The occurrence of Pb concentration peaks in sediments of Roman and modern age demonstrates the global distribution of heavy metal deposition, even into high-mountain lakes.  相似文献   

14.
Five Holocene sediment cores from the northwestern Baltic proper were analysed for lithology, siliceous microfossil assemblages and geochemical parameters. The data indicate that surface water salinity and redox conditions below the halocline have changed drastically at least four times since the Baltic Sea changed from a fresh water lake (the Ancylus Lake) to a semi-enclosed brackish water sea (the Litorina Sea) c. 8500 yrs BP. These variations appear to be mainly effects of changes in water depth at the thresholds of inlet areas. Based on these changes, and earlier studies of the shoreline displacement in the inlet areas, we propose a tentative model for changes of large scale water circulation in the Baltic Sea during the last c. 8500 yrs.At the transition from fresh to brackish water 8500 14C yrs BP, upwelling of nutrient rich bottom water started to occur, causing a slight increase in primary production. Diatom assemblages in sediments indicate a slow rise in surface water salinity during this period.At 7000-6500 14C yrs BP, surface water salinity and primary production simultaneously increased, as anoxic bottom conditions were established at depth below the halocline. We suggest that high primary production was caused by increased input of oceanic water, leading to increased upwelling of nutrient rich bottom water. At the anoxic bottoms laminated sediments formed until 5000-4500 14C yrs BP. This period (c. 7000-4500 14C BP) was contemporaneous with the post-glacial transgression maximum in Öresund, and we suggest it represents the most saline phase of the Baltic Sea post-glacial history.Due to a regression in Öresund starting 4500 14C yrs BP, upwelling decreased and the halocline was lowered, resulting in decreased primary productivity and hence oxic deep water conditions. The diatom assemblages of the sediments indicate a lowering of salinity at the beginning of this period.We suggest that the second period of anoxic bottom conditions c. 2000-1500 14C yrs BP was caused by a change of dominating inflows from the Öresund to the Belt Sea. This resulted in decreased salinity of the inflowing water which did not penetrate to the deepest parts of the basin as frequently as before. The diatom record indicates both a second lowering of salinity and a change in the large scale water circulation at the beginning of this period.  相似文献   

15.
Many lowland rivers in the United Kingdom, including the Nene, Soar and Severn, have layered floodplains with a basal gravel of Pleistocene or Late glacial age and a structureless silty clay superficial unit burying the entire former floodplain. This burial is illustrated by the existence of variable, mixed and pedologically disturbed sediments and palaeo landsurfaces between the basal gravels and superficial silty clay. This paper presents a comparison of the pre- and post-late Holocene palaeo landsurfaces and palaeochannels using data from the Nene, Soar and Severn valleys. From this comparison it is argued that during the mid to late Holocene (ca 4500 yr BP to 2500 yr BP) floodplains and river channels underwent a metamorphosis. This is indicated by accelerated vertical accretion, a reduction in floodplain relative relief, changed floodplain soil conditions, a reduction in channel W/D ratios and a resultant increase in the silty clay proportion of channel perimeter sediments. There are indications that hydrological change preceded this metamorphosis but the primary cause was an increase in fine sediment supply during the later Holocene and a disequilibrium between channel bed and floodplain aggradation rates resulting in relative incision. This metamorphosis, which is explained in this paper by the proposed stable-bed aggrading-banks model (SBAB), is the key factor in the Holocene evolution of low-energy floodplain systems in the United Kingdom, upon which more subtle short-term fluctuations are superimposed.  相似文献   

16.
青海喇家遗址土壤序列及史前山洪泥流灾难释光测年研究   总被引:1,自引:0,他引:1  
位于青藏高原东北部边缘的青海民和官亭盆地喇家遗址,保存着全新世环境变化、人类活动、复杂地表过程演变与突发性灾难事件的记录。关于其史前群发性灾难的成因及发生年代问题,争议颇多,受到国内外学术界和媒体的广泛关注。经过多年来深入彻底的调查研究,在上喇家村南侧、喇家遗址北部区域首次发现完整连续的晚更新世晚期以来黄土—土壤地层剖面。在详尽的土壤与沉积学观察和层次关系分析的基础上,系统性采集样品,进行了光释光测年。由此在黄河第二级阶地风成黄土与黑垆土类土壤为主的区域,建立起了喇家遗址土壤沉积物地层序列与年代框架。结果表明,该剖面从12000 a BP堆积发育至今,从下至上的层序为晚更新世马兰黄土顶部(L1-1)、全新世早期过渡性黄土(Lt)、全新世中期古土壤(S0)、近代黄土(L0)与现代土壤层(MS)。其中在全新世中期古土壤黑垆土层(S0)之内,OSL年龄3960-3650 a BP期间,发现有3层红色粘土质泥流沉积层插入,记录了3次大规模山洪泥流溢出沟槽、在平坦的阶地表面扩散沉积、掩埋齐家文化聚落而成灾的事件。综合多种断代方法结果,确定这3期山洪泥流灾难性事件分别发生在3850 a BP、3800 a BP、3600 a BP左右。其中第一场山洪泥流在阶地表面大范围扩散过程当中,覆盖了喇家遗址东部区域。这就充分表明,来自于官亭盆地北部第三系红层丘陵沟壑区的暴雨山洪泥流过程,与同时期发生的若干次大地震,共同毁灭了喇家遗址齐家文化聚落的东部区域。这些研究成果,对于深入探讨官亭盆地环境变化与人地关系演变规律、准确理解喇家遗址的形成、史前人类活动、突发性灾难及其毁灭过程问题,具有重要的科学意义。  相似文献   

17.
ABSTRACT. Glacier fluctuations in the Strait of Magellan tell of the climatic changes that affected southern latitudes at c. 53–55°S during the Last Glacial Maximum (LGM) and Late-glacial/Holocene transition. Here we present a revised chronology based on cosmogenic isotope analysis, 14C assays, amino acid racemisation and tephrochronology. We unpick the effect of bedrock-derived lignite which has affected many 14C dates in the past and synthesise new and revised dates that constrain five glacier advances (A to E). Advance A is prior to the LGM. LGM is represented by Advance B that reached and largely formed the arcuate peninsula Juan Mazia. Carbon-14and 10Be dating show it occurred after 31 250 cal yrs BP and culminated at 25 200–23 100 cal yrs BP and was then followed by the slightly less extensive advance C sometime before 22 400–20 300 cal yrs BP. This pattern of an early maximum is found elsewhere in South America and more widely. Stage D, considerably less extensive, culminated sometime before 17 700–17 600 cal yrs BP and was followed by rapid and widespread glacier retreat. Advance E, which dammed a lake, spanned 15 500–11770 cal yrs BP. This latter advance overlaps the Bølling-Allerød interstadials and the glacier retreat occurs during the peak of the Younger Dryas stadial in the northern hemisphere. However, the stage E advance coincides with the Antarctic Cold Reversal (c. 14800–12700 cal yrs BP) and may indicate that some millennial-scale climatic fluctuations in the Late-glacial period are out of phase between the northern and southern hemispheres.  相似文献   

18.
A 341 cm long sediment sequence was recovered from the unofficially named Raffles Sø on Raffles Ø, outer Scoresby Sund region, East Greenland. The sediment sequence consists in the upper part (0–230 cm) of a stratified gyttja enriched in organic carbon and biogenic silica whereas the lower core part (235–341 cm) is composed of terrigenous, consolidated glacio-limnic sediments. 14C-AMS measurements indicate that the sediment sequence represents the entire Holocene lake history from 10,030 calibrated radiocarbon years.The geochemical parameters (opal, total organic carbon (TOC), total nitrogen (TN)) and the total diatom concentration show similar developments during the Holocene, and reflect changes in biological production and nutrient input into the lake. These records clearly reveal a broad Holocene TOC-opal-maximum interval between 5200 and 1800 cal. yrs BP.The diatom flora consisted of 66 taxa representing 20 genera but only seven taxa were abundant and, sometimes, these were monospecifically dominant during the Holocene. In the sediment core from Raffles Sø four successive stratigraphical zones can be distinguished. Accumulation of diatom valves began at 9900 cal. yrs BP with a Stephanodiscus minutulus (Kütz.) Cleve and Möller dominated assemblage (stratigraphic zone 1) followed by a diatom flora dominated by Cyclotella pseudostelligera Hustedt and, less frequently, by Diatoma tenuis Agardh (9400 until 5900 cal. yrs BP, zone 2). Cyclotella sp. A, a taxon which belongs to the Cyclotella rossii-comensis-tripartita-complex, was the dominant floral element between 5200 and 1800 cal. yrs BP (zone 3). From 1800 cal. yrs BP, the periphytic taxa Fragilaria capucina var. gracilis (Østr.) Hustedt and F. capucina var. rumpens (Kütz.) Lange-Bertalot attained highest relative abundances, also almost monospecifically (zone 4).The distribution and composition of the diatom assemblages in the sediment record from Raffles Sø probably reflect past variations in the extent of the lake-ice cover during the growing season. More or less ice-free conditions during summer may have prevailed during the early Holocene until ca. 1800 cal. yrs BP, which allowed growth of planktonic diatoms (Cyclotella taxa) in the pelagic lake region. From 1800 cal. yrs BP, colder conditions lead to a perennial lake-ice cover with a small ice-free moat in summer which favored the growth of periphytic, littoral species (Fragilaria capucina varieties).  相似文献   

19.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   

20.
全新世中期西辽河流域聚落选址与环境解读   总被引:6,自引:0,他引:6  
韩茂莉  刘宵泉  方晨  张一  李青淼  赵玉蕙 《地理学报》2007,62(12):1287-1298
通过x2 检验等方式提出,全新世中期西辽河流域聚落对海拔400~500 m 高程区域选择倾向十分明显,在这一高程内又偏重于距河床10~40 m 的坡地,兴隆洼、赵宝沟以及红山文化期这一特征最突出,夏家店下层文化期聚落位置表现出以400~500 m 高程区为核心向高、低两个方位发展。针对上述聚落环境选择特征指出:① 根据人类生存方式可将西辽河流域划 出林地与草地两大地带,两者的交界处即400~500 m 高程区域内以坡地为主的林缘地带,兴隆洼、赵宝沟文化期人类的采集、渔猎活动主要集中在这里,随着红山、夏家店下层文化期 原始农业的发展,聚落选址从原来的林缘地带向草地甚至林地扩展,前后不同考古文化期的 聚落位置界定了自然环境的空间属性与地域差异。② 西辽河流域受地带性环境因素制约,即使在全新世大暖期林缘地带的动植物资源也并不丰富,仅能满足人口密度极低的兴隆洼、赵宝沟文化期人类获取食物的需求,红山文化以后随着人口增殖原始农业逐渐发展起来。③ 全新世中期西辽河流域聚落密度很低,人口规模在这一地区的环境容量之下,农业开发尚未对西辽河流域带来明显的环境扰动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号