首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Previous studies using observations made at low spatial and spectral resolution showed that the resonance lines of He  i and He  ii are anomalously strong in the quiet Sun when compared with other transition region lines formed at similar temperatures. Here, the higher spatial and spectral resolution provided by the Coronal Diagnostic Spectrometer ( cds ) instrument on board the Solar and Heliospheric Observatory ( SOHO ) is used to re-examine the behaviour of the He  i and He  ii lines and other transition region lines, in quiet regions near Sun centre. Supergranulation cell boundaries and cell interiors are examined separately. Near-simultaneous observations with the sumer instrument provide information on the lower transition region and the electron pressure. While the lines of He  i and He  ii have a common behaviour, as do the other transition region lines, the behaviour of the helium lines relative to the other transition region lines is significantly different. The emission measure distributions that account for all transition region lines, except those of helium, fail to produce sufficient emission in the He  i and He  ii resonance lines by around an order of magnitude, in both supergranulation cell boundary and cell interior regions. The electron pressure appears to be higher in the cell interiors than in the average cell boundaries, although the uncertainties are large. While the VAL-D model gives a closer match to the He  i 584.3-Å line, it does not successfully reproduce other transition region lines.  相似文献   

2.
Observations made at the quiet Sun-centre with the Coronal Diagnostic Spectrometer (CDS) and Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instruments on the Solar and Heliospheric Observatory ( SOHO ) have shown that the intensities of the resonance lines of He  i and He  ii are significantly larger than predicted by emission measure distributions found from other transition region lines. The intensities of the helium lines are observed to be lower in coronal holes than in the quiet Sun. Any theory proposed to account for the behaviour of the helium lines must explain the observations of both the quiet Sun and coronal holes. We use observations made with SOHO to find the physical conditions in a polar coronal hole. The electron pressure is found using the C  iii 1175-Å and N  iii 991.5-Å lines, as the C  iii line at 977.0 Å becomes optically thick in some regions at high latitudes. The mean electron pressure is a factor of ≃2 lower than that at the quiet Sun-centre. The mean coronal electron temperature is     . The helium lines are enhanced with respect to other transition region lines but by factors which are ≃ 30 per cent smaller than at the quiet Sun-centre. The mean ratios of the intensities of the He  i 537.0- and 584.3-Å lines and of the He  i and He  ii 303.8-Å lines vary little with the type of region studied. These ratios are compared with those predicted by models of the transition region, taking into account the radiative transfer in the helium lines. No significant variation is found in the relative abundances of carbon and silicon.  相似文献   

3.
We investigate the influence of the ionization of helium on the low-degree acoustic oscillation frequencies in model solar-type stars. The signature in the oscillation frequencies characterizing the ionization-induced depression of the first adiabatic exponent γ is a superposition of two decaying periodic functions of frequency ν, with 'frequencies' that are approximately twice the acoustic depths of the centres of the He  i and He  ii ionization regions. That variation is probably best exhibited in the second frequency difference  Δ2ν n ,  l ≡ν n −1,  l − 2ν n ,  l n +1,  l   . We show how an analytic approximation to the variation of γ leads to a simple representation of this oscillatory contribution to Δ2ν which can be used to characterize the γ variation, our intention being to use it as a seismic diagnostic of the helium abundance of the star. We emphasize that the objective is to characterize γ, not merely to find a formula for Δ2ν that reproduces the data.  相似文献   

4.
5.
The pulsation of the solar surface is caused by acoustic waves traveling in the solar interior. Thorough analyses of observational data indicate that these f and p helioseismic oscillation modes are not bounced back completely at the surface but they partially penetrate into the atmosphere. Atmospheric effects and their possible observational application are investigated in one‐dimensional magnetohydrodynamic models. It is found that f and p mode frequencies are shifted of the order of μHz due to the presence of an atmospheric magnetic field. This shift varies with the direction of the wave propagation.Resonant coupling of global helioseismic modes to local Alfvén and slow waves reduce the life time of the global modes. The resulting line width of the frequency line is of the order of nHz, and it also varies with propagation angle. These features enable us to use helioseismic observations in magnetic diagnostics of the lower atmosphere. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
A new set of accurately measured frequencies of solar oscillations is used to infer the rotation rate inside the Sun, as a function of radial distance as well as latitude. We have adopted a regularized least-squares technique with iterative refinement for both 1.5D inversion, using the splitting coefficients, and 2D inversion using individual m splittings. The inferred rotation rate agrees well with earlier estimates showing a shear layer just below the surface and another one around the base of the convection zone. The tachocline or the transition layer where the rotation rate changes from differential rotation in the convection zone to an almost latitudinally independent rotation rate in the radiative interior is studied in detail. No compelling evidence for any latitudinal variation in the position and width of the tachocline is found, although it appears that the tachocline probably shifts to a slightly larger radial distance at higher latitudes and possibly also becomes thicker. However, these variations are within the estimated errors and more accurate data would be needed to make a definitive statement about latitudinal variations.  相似文献   

7.
Temporal variations of the structure and the rotation rate of the solar tachocline region are studied using helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI) obtained during the period 1995–2000. We do not find any significant temporal variation in the depth of the convection zone, the position of the tachocline or the extent of overshoot below the convection zone. No systematic variation in any other properties of the tachocline, like width, etc., is found either. The possibility of periodic variations in these properties is also investigated. Time-averaged results show that the tachocline is prolate with a variation of about 0.02 R in its position. Neither the depth of the convection zone nor the extent of overshoot shows any significant variation with latitude.  相似文献   

8.
1 INTRODUCTION Gan, Li and Chang (2001a) proposed a quantitative method to obtain the lower energycutoff (Er) of power-law electrons from the observed broken-down double power-law hard Xray spectrum. Most recently Can et al. (2002) improved the method and let it be moreself-consistent. They applied their improved method to the 54 hard X-ray events observed withBATSE/CGRO and acquired more general results in comparison with those obtained by Canet al. (2001b). Despite the data is rel…  相似文献   

9.
Estimating the Size and Timing of the Maximum Amplitude of Solar Cycle 24   总被引:4,自引:0,他引:4  
A simple statistical method is used to estimate the size and timing of maximum amplitude of the next solar cycle (cycle 24). Presuming cycle 23 to be a short cycle (as is more likely), the minimum of cycle 24 should occur about December 2006 (±2 months) and the maximum, around March 2011 (±9 months), and the amplitude is 189.9 ±15.5, if it is a fast riser, or about 136, if it is a slow riser. If we presume cycle 23 to be a long cycle (as is less likely), the minimum of cycle 24 should occur about June 2008 (±2 months) and the maximum, about February 2013 (±8 months) and the maximum will be about 137 or 80, according as the cycle is a fast riser or a slow riser.  相似文献   

10.
11.
The Relation between the Amplitude and the Period of Solar Cycles   总被引:3,自引:0,他引:3  
The maximum amplitudes of solar activity cycles are found to be well anti-correlated (r = -0.72) with the newly defined solar cycle lengths three cycles before (at lag -3) in 13-month running mean sunspot numbers during the past 190 years. This result could be used for predicting the maximum sunspot numbers. The amplitudes of Cycles 24 and 25 are estimated to be 149.5±27.6 and 144.3±27.6, respectively.  相似文献   

12.
The investigation of the dynamics of magnetic fields from small scales to the large scales is very important for the understanding of the nature of solar activity. It is also the base for producing adequate models of the solar cycle with the purpose to predict the level of solar activity. Since December 1995 the Michelson Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory (SOHO) provides full disk magnetograms and synoptic maps which cover the period of solar cycle 23 and the current minimum. In this paper, I review the following important topics with a focus on the dynamics of the solar magnetic field. The synoptic structure of the solar cycle; the birth of the solar cycle (overlapping cycles 23 and 24); the relationship of the photospheric magnetic activity and the EUV solar corona, polar magnetic fields and dynamo theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
I present a new numerical tool for studying the interaction of meridional flows and magnetic fields, and study their role in establishing angular-momentum balance in the solar radiative zone. Quantitative comparisons with helioseismic observations provide stringent constraints on existing models of the dynamics of the solar interior. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We experiment with a method of measuring the frequency of solar p modes, intended to extend the passband for the variations of the frequency spectrum as high as possible. So far this passband is limited to a fraction of μ Hz for the classical analysis based on numerical fits of a theoretical line profile to a power spectrum averaged over periods lasting at least several weeks. This limit for the present analysis can be shifted to the mHz range, corresponding to some of the “5 min” oscillations, but in this range we use a lower resolution which allows us to separate odd and even p modes. We show an example of the results for long term variations and apply this analysis to search for a modulation of the p‐mode frequency spectrum by asymptotic series of solar g modes. A faint signal is found in the analysis of 10 years of GOLF data. This very preliminary result possibly indicates the detection of a small number of g modes of degree l = 1. A tentative determination of an observational value of the parameter P0 follows. P0 is the scaling factor of the asymptotic series of g modes and is a key data for solar core physics. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Determination of the rotation of the solar core requires very accurate data on splittings for the low-degree modes which penetrate to the core, as well as for modes of higher degree to suppress the contributions from the rest of the Sun to the splittings of the low-degree modes. Here we combine low-degree data based on 32 months of observations with the BiSON network and data from the LOWL instrument. The data are analysed with a technique that specifically aims at obtaining an inference of rotation that is localized to the core. Our analysis provides what we believe is the most stringent constraint to date on the rotation of the deep solar interior.  相似文献   

16.
利用已知的22个完整太阳活动周平滑月平均黑子数的记录,对正在进行的太阳周发展趋势给出了预测方法,并应用于第23周,同时与其他预报方法的结果进行了比较。  相似文献   

17.
The heating of the solar corona has been a fundamental astrophysical issue for over sixty years. Over the last decade in particular, space-based solar observatories (Yohkoh, SOHO and TRACE) have revealed the complex and often subtle magnetic-field and plasma interactions throughout the solar atmosphere in unprecedented detail. It is now established that any energy release mechanism is magnetic in origin - the challenge posed is to determine what specific heat input is dominating in a given coronal feature throughout the solar cycle. This review outlines a range of possible magnetohydrodynamic (MHD) coronal heating theories, including MHD wave dissipation and MHD reconnection as well as the accumulating observational evidence for quasi-periodic oscillations and small-scale energy bursts occurring in the corona. Also, we describe current attempts to interpret plasma temperature, density and velocity diagnostics in the light of specific localised energy release. The progress in these investigations expected from future solar missions (Solar-B, STEREO, SDO and Solar Orbiter) is also assessed.Received: 6 February 2003, Published online: 14 November 2003 Correspondence to: R. W. Walsh  相似文献   

18.
Powerful flares are closely related to the evolution of the complex magnetic field configuration at the solar surface. The strength of the magnetic field and speed of its evolution are two vital parameters in the study of the change of magnetic field in the solar atmosphere. We propose a dynamic and quantitative depiction of the changes in complexity of the active region: E=u×B, where u is the velocity of the footpoint motion of the magnetic field lines and B is the magnetic field. E represents the dynamic evolution of the velocity field and the magnetic field, shows the sweeping motions of magnetic footpoints, exhibits the buildup process of current, and relates to the changes in nonpotentiality of the active region in the photosphere. It is actually the induced electric field in the photosphere. It can be deduced observationally from velocities computed by the local correlation tracking (LCT) technique and vector magnetic fields derived from vector magnetograms. The relationship between E and ten X-class flares of four active regions (NOAA 10720, 10486, 9077, and 8100) has been studied. It is found that (1) the initial brightenings of flare kernels are roughly located near the inversion lines where the intensities of E are very high, (2) the daily averages of the mean densities of E and its normal component (E n) decrease after flares for most cases we studied, whereas those of the tangential component of E (E t) show no obvious regularities before and after flares, and (3) the daily averages of the mean densities of E t are always higher than those of E n, which cannot be naturally deduced by the daily averages of the mean densities of B n and B t.  相似文献   

19.
20.
By using the monochromatic images and magnetograms obtained with the satellite Hinode, 35 pairs of bipolar moving magnetic features (MMFs) in sunspot penumbrae are studied in the following three aspects: the morphological characteristics, velocities of motion and responses in low atmospheric layers. Then the following conclusions are drawn. (1) The bipolar MMFs appear in pairs of positive and negative polarities, are located in the midst of the approximately vertical magnetic fields in spot penumbrae, and move toward the outer boundaries of penumbrae. This indirectly justifies that the bipolar MMFs originate in the horizontal magnetic fields of penumbrae. In the time intervals of 2-8 hours and at the same positions, there appear the bipolar MMFs with similar morphologial characteristics and velocities of motion. This povides an evidence which supports the model of magnetic lines in the shape of sea serpent. (2) In the process of motion of bipolar MMFs there may appear brightenings in the photospere and chromosphere, and this implies that the middle and low layers of solar atmosphere are heated by the bipolar MMFs. (3) The sites of occurrence of bipolar MMFs and the distribution of penumbral magnetic field agree with the structural characteristics of uncombed sunspot penumbrae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号