共查询到20条相似文献,搜索用时 0 毫秒
1.
Initial perturbation scheme is one of the important problems for ensemble prediction. In this paper,
ensemble initial perturbation scheme for Global/Regional Assimilation and PrEdiction System (GRAPES)
global ensemble prediction is developed in terms of the ensemble transform Kalman filter (ETKF) method.A new GRAPES global ensemble prediction system (GEPS) is also constructed. The spherical simplex 14-member ensemble prediction experiments, using the simulated observation network and error characteristics of simulated observations and innovation-based in ation, are carried out for about two months. The structure characters and perturbation amplitudes of the ETKF initial perturbations and the perturbation growth characters are analyzed, and their qualities and abilities for the ensemble initial perturbations are given.
The preliminary experimental results indicate that the ETKF-based GRAPES ensemble initial perturbations could identify main normal structures of analysis error variance and reflect the perturbation amplitudes.The initial perturbations and the spread are reasonable. The initial perturbation variance, which is approximately equal to the forecast error variance, is found to respond to changes in the observational spatial variations with simulated observational network density. The perturbations generated through the simplex method are also shown to exhibit a very high degree of consistency between initial analysis and short-range forecast perturbations. The appropriate growth and spread of ensemble perturbations can be maintained up to 96-h lead time. The statistical results for 52-day ensemble forecasts show that the forecast scores ofensemble average for the Northern Hemisphere are higher than that of the control forecast. Provided that using more ensemble members, a real-time observational network and a more appropriate inflation factor,better
effects of the ETKF-based initial scheme should be shown. 相似文献
2.
GRAPES区域集合预报系统应用研究 总被引:17,自引:3,他引:17
为发展GRAPES(Global and Regional Assimilation and Prediction System)区域集合预报系统(GRAPES Regional Ensemble Prediction System,GRAPES-REPS),采用集合变换卡尔曼滤波(ETKF)初值扰动方法以及多物理过程组合的模式扰动方法,基于业务区域模式GRAPES_MesoV3.3.2.4构建了区域集合预报系统,进行了连续40 d的批量试验,重点分析了ETKF初值扰动的结构及其演变特征,并通过概率预报检验方法对GRAPES-REPS进行了集合预报系统性能检验和降水预报检验,分析了该系统对强降水个例的预报效果。试验结果表明,GRAPES-REPS能产生较合理的集合预报初值扰动,扰动结构随流型依赖并对观测有较好的响应,且扰动成员相互正交。扰动总能量分析表明集合扰动能够随预报时效保持合理增长状态。集合预报检验表明集合预报结果优于控制预报,集合成员间在72 h预报时效内能保持合理的集合离散度。将该区域集合预报系统与业务上基于WRF模式的区域集合预报系统WRF-REPS进行了降水预报对比,表明GRAPES-REPS的降水预报能力表现要优于业务WRF-REPS。强降水个例分析表明集合预报能较好预报出强降水中心,预报效果明显优于控制预报。 相似文献
3.
Qian ZOU Quanjia ZHONG Jiangyu MAO Ruiqiang DING Deyu LU Jianping LI Xuan LI 《大气科学进展》2023,40(3):501-513
Based on a simple coupled Lorenz model, we investigate how to assess a suitable initial perturbation scheme for ensemble forecasting in a multiscale system involving slow dynamics and fast dynamics. Four initial perturbation approaches are used in the ensemble forecasting experiments: the random perturbation(RP), the bred vector(BV), the ensemble transform Kalman filter(ETKF), and the nonlinear local Lyapunov vector(NLLV) methods. Results show that,regardless of the method used, the ensemble ave... 相似文献
4.
Heavy Rainfall Ensemble Prediction: Initial Condition Perturbation vs Multi-Physics Perturbation 总被引:4,自引:0,他引:4 下载免费PDF全文
Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, perturbed initial fields for medium-range weather forecasts are often configured to focus on the baroclinic instability rather than the convective instability. Thus, alternative approaches to generate initial perturba- tions need to be developed to accommodate the uncertainty of the convective instability. In this paper, an initial condition perturbation approach to mesoscale heavy rainfall ensemble prediction, named as Different Physics Mode Method (DPMM), is presented in detail. Based on the PSU/NCAR mesoscale model MM5, an ensemble prediction experiment on a typical heavy rainfall event in South China is carried out by using the DPMM, and the structure of the initial condition perturbation is analyzed. Further, the DPMM ensem- ble prediction is compared with a multi-physics ensemble prediction, and the results show that the initial perturbation fields from the DPMM have a reasonable mesoscale circulation structure and could reflect the prediction uncertainty in the sensitive regions of convective instability. An evaluation of the DPMM ini- tial condition perturbation indicates that the DPMM method produces better ensemble members than the multi-physics perturbation method, and can significantly improve the precipitation forecast than the control non-ensemble run. 相似文献
5.
GRAPES区域集合预报模式的初值扰动增长特征 总被引:3,自引:1,他引:3
基于GRAPES-REPS(Global and Regional Assimilation and Prediction Enhanced System-Regional Ensemble Prediction System)区域集合预报模式和集合变换卡尔曼滤波(Ensemble Transform Kalman Filter,ETKF)初值扰动方法,对2015年6月1~15日10 km与15 km水平分辨率分别进行集合预报试验,通过分析ETKF初值扰动分量、初值扰动方差准确率、动能谱、扰动能量演变、日变化及集合离散度、均方根误差等特征,揭示GRAPES-REPS区域集合预报ETKF初值扰动结构及增长特征。结果表明:(1)ETKF初值扰动方案产生的扰动能够保持所有正交、不相关方向的误差方差,且ETKF分量α参数值及放大因子具有较好的稳定性。(2)ETKF初值扰动方法生成的扰动场以大尺度扰动为主,扰动结构及能量具有随流型依赖特征,低层以内能扰动为主,高层以动能扰动为主,且集合扰动可以有效捕捉预报误差的结构。(3)GRAPES区域集合预报初值扰动总能量和集合离散度随预报时效的延长均呈发展趋势,但离散度增长率小于均方根误差增长率,即集合预报总体存在集合离散度不足的问题。(4)水平分辨率提高可以增加中高层大尺度扰动波谱能量,明显改进等压面及近地面风场及温度场的集合预报效果。值得指出的是,GRAPES-REPS区域集合预报低层内能扰动能量存在明显的日变化特征,特别是青藏高原地区更加显著,需要进一步研究青藏高原初值扰动结构的合理性。 相似文献
6.
目前国家气象中心业务GRAPES区域集合预报系统中集合变换卡尔曼滤波(ETKF)方法采用的是模拟观测信息,为进一步完善ETKF方法,拟对ETKF初值扰动通过引入真实探空观测资料,使扰动场能够代表真实观测的不确定信息,改善区域集合预报技巧。真实观测资料的引入会使得每日的观测数目和分布发生变化,这对ETKF方法而言可能会引起扰动振幅的不稳定,因此在引入真实观测资料的基础上设计了新的扰动振幅调节因子,通过格点空间中离散度和均方根误差关系来对初值扰动振幅进行自适应调整。从初值扰动结构、概率预报技巧以及降水预报效果等方面对比分析了基于模拟观测、真实观测以及真实观测结合新型调节因子的ETKF方案的差异,结果表明:真实探空资料能够有效应用于GRAPES区域集合预报系统中,真实观测资料与模拟观测资料相比较为稀疏,可以获得更大量级的初值扰动振幅;真实观测资料有助于提高区域集合的离散度,但对集合预报准确度以及概率预报结果的提高有限,对于降水预报效果提高也有限;新型的扰动振幅调节因子可以有效获得稳定的初值扰动振幅,并保持ETKF扰动结构,真实观测资料与扰动振幅自适应调节因子相结合,可以有效提高区域集合的概率预报结果,并有效提高降水预报效果。 相似文献
7.
较系统地概述了中国气象局全球/区域集合预报系统及描述模式初值和模式自身不确定性的集合预报扰动技术发展历程,回顾了GRAPES(Global/Regional Assimilation Pr Ediction System)全球集合预报的奇异向量初值扰动方法、GRAPES区域集合预报的集合变换卡尔曼滤波初值扰动方法和多尺度混合初值扰动方法、GRAPES全球/区域集合预报模式不确定性的随机物理过程倾向项扰动方法和动能后向散射随机补偿方法等研究成果,介绍了GRAPES全球/区域集合预报业务系统构建参数设置和预报性能,最后分析了GRAPES全球/区域集合预报中存在的问题,展望了未来发展方向。 相似文献
8.
一种新型的中尺度暴雨集合预报初值扰动方法研究 总被引:41,自引:3,他引:41
提出一种针对对流不稳定构造具有中尺度运动特征的集合预报扰动初值的新方法--异物理模态法, 介绍了异物理模态法产生初值扰动区域和扰动振幅的数学处理方案, 即由不同对流参数化方案预报离差获得集合预报初值扰动区域、扰动结构和扰动振幅的数学处理过程. 利用美国PSU/NCAR的MM5中尺度模式, 对一次典型暴雨进行异物理模态法初值扰动集合预报试验, 详细分析了扰动初值的结构和集合预报结果. 结果表明, 该方法产生的初值扰动场具有合理的中尺度环流结构, 可以反映对流敏感区域的对流不稳定的预报不确定性, 集合预报结果可以明显改善控制预报. 相似文献
9.
10.
A Multivariate Empirical Orthogonal Function-Based Scheme for the Balanced Initial Ensemble Generation of an Ensemble Kalman Filter 下载免费PDF全文
The initial ensemble perturbations for an ensemble data assimilation system are expected to reasonably sample model uncertainty at the time of analysis to further reduce analysis uncertainty. Therefore, the careful choice of an initial ensemble perturbation method that dynamically cycles ensemble perturbations is required for the optimal performance of the system. Based on the multivariate empirical orthogonal function (MEOF) method, a new ensemble initialization scheme is developed to generate balanced initial perturbations for the ensemble Kalman filter (EnKF) data assimilation, with a reasonable consideration of the physical relationships between different model variables. The scheme is applied in assimilation experiments with a global spectral atmospheric model and with real observations. The proposed perturbation method is compared to the commonly used method of spatially-correlated random perturbations. The comparisons show that the model uncertainties prior to the first analysis time, which are forecasted from the balanced ensemble initial fields, maintain a much more reasonable spread and a more accurate forecast error covariance than those from the randomly perturbed initial fields. The analysis results are further improved by the balanced ensemble initialization scheme due to more accurate background information. Also, a 20-day continuous assimilation experiment shows that the ensemble spreads for each model variable are still retained in reasonable ranges without considering additional perturbations or inflations during the assimilation cycles, while the ensemble spreads from the randomly perturbed initialization scheme decrease and collapse rapidly. 相似文献
11.
基于动力降尺度的区域集合预报初值扰动构建方法研究 总被引:1,自引:3,他引:1
利用全球集合预报系统资料(Global Ensemble Forecast System,GEFS),基于WRF中尺度模式构建了区域集合预报系统,区域集合初值的构建采用两种方案,一种是GEFS全球集合预报初值场直接动力降尺度(称为DOWN集合),另一种是提取GEFS全球集合降尺度后的扰动场,并叠加到区域数值预报系统(北京快速更新循环数值预报系统:Beijing Rapid Update Cycle System,BJ-RUC)分析场上构建集合初值场(称为D-RUC集合)。进行了批量试验,通过对比发现D-RUC集合的中小尺度扰动增长优于DOWN集合,而大尺度扰动分量的增长两者相当,说明与高分辨率分析场叠加可以促进动力降尺度扰动的中小尺度扰动分量的增长。集合预报扰动准确性检验结果显示,短预报时效内DOWN集合扰动明显低估了预报误差,在预报误差较大的位置扰动较小,而D-RUC集合能够更好地识别预报场中哪些位置预报误差较大,而哪些位置预报误差较小。集合预报检验结果表明,D-RUC方法能显著改善短时效预报效果,集合离散度有所增加、均方根误差有所减少,概率预报评分显示D-RUC集合比DOWN集合在短预报时效占优。降水个例分析结果表明D-RUC方法能显著改善短时效内的降水概率预报效果。 相似文献
12.
Lili LEI Yangjinxi GE Zhe-Min TAN Yi ZHANG Kekuan CHU Xin QIU Qifeng QIAN 《大气科学进展》2022,39(11):1816-1832
An ensemble Kalman filter(EnKF) combined with the Advanced Research Weather Research and Forecasting model(WRF) is cycled and evaluated for western North Pacific(WNP) typhoons of year 2016. Conventional in situ data, radiance observations, and tropical cyclone(TC) minimum sea level pressure(SLP) are assimilated every 6 h using an 80-member ensemble. For all TC categories, the 6-h ensemble priors from the WRF/EnKF system have an appropriate amount of variance for TC tracks but have insufficient v... 相似文献
13.
风暴尺度集合预报中的混合初始扰动方法及其在北京2012年“7.21”暴雨预报中的应用 总被引:4,自引:1,他引:4
风暴尺度集合预报系统(Storm-Scale Ensemble Forecast system,简称SSEFs)中集合成员之间发散度不足一直都是研究的难点。本文尝试了将Barnes空间滤波融入到集合转换卡尔曼滤波(ETKF)更新预报系统中的混合初值扰动法。该方案将ETKF方法的小尺度信息与来自于侧边界条件扰动的大尺度信息相结合,缓解了扰动在侧边界不匹配的问题。通过2012年北京“7.21”暴雨并使用邻位方法对比分析了不同初值扰动方案在不同时间尺度与空间尺度上的特征,在此基础上进一步探讨了构造混合初始扰动法的可行性。结果表明:ETKF试验所构造的初始扰动无法与侧边界条件扰动相匹配,混合后的初始扰动可以有效缓解SSEFs中由于初始扰动与侧边界扰动不匹配产生的虚假波动,其中大尺度信息保留较多的混合试验(ETKF80)和动力降尺度方案(Down)在减少虚假波动方面的效果最优;从集合离散度来看,在前期暖区降水阶段ETKF的离散度在小尺度上最大,随着锋面降水的开始,Down的离散度逐渐超过ETKF,而使用各滤波波段构造的混合试验同时具备ETKF与Down二者的特征。选择合理的滤波波段可以获得最为合理的离散度表现(ETKF180),说明仅考虑侧边界匹配(Down和ETKF80)并不能获得最合理的集合离散度,应综合考虑其他因素。从降水概率预报结果来看,选取合适的滤波波段所构造的混合扰动试验同样获得了较好的效果。 相似文献
14.
多物理ETKF在暴雨集合预报中的初步应用 总被引:3,自引:2,他引:3
基于集合转换卡尔曼滤波(ETKF)的初值扰动方法是目前集合预报领域热点方法之一,但应用在短期集合预报中仍存在离散度不够、误差较大等问题。考虑到在区域短期集合预报中,模式不确定性和边界不确定性的影响不能忽略,本文尝试在ETKF生成分析扰动的过程中,同时考虑初值不确定性、物理不确定性与边界不确定性,进而构建多初值、多物理、多边界ETKF集合,并以2010年9月30日到10月8日海南岛特大暴雨作为研究个例,对其在暴雨集合预报中的应用展开初步研究,重点分析多种物理参数化过程对预报结果的影响。结果表明,多物理过程的ETKF(多物理ETKF)和单物理过程的ETKF(单一ETKF)均优于对照预报,多物理ETKF优势更加明显,其均方根误差、离散度等指标均得到很好的改善;对于降水采用SAL方法进行检验,发现多物理ETKF对于降水位置的预报有明显的改善,对于特大暴雨的强度预报也略有改善。研究表明,在ETKF初值扰动中加入多种物理过程,可以有效改善短期集合的离散度,提高预报准确率,有良好的发展前景和应用潜力。 相似文献
15.
T213全球集合预报系统物理过程随机扰动方法研究 总被引:7,自引:4,他引:7
目前我国的T213全球集合预报系统采用BGM初值扰动方案,没有考虑模式扰动方法,在技术上滞后于国际先进数值中心的集合预报系统。本文参考ECMWF的模式扰动方法,设计了我国T213全球集合预报系统的物理过程随机扰动方法,并对2008年7月20—31日进行了集合预报批量试验。试验结果表明:T213全球中期数值预报模式对物理过程随机扰动很敏感,对物理过程扰动后,模式物理量的预报情况发生变化,且这种变化随着积分时间增长而迅速扩大。在水平方向上主要表现为南北半球中高纬度地区较赤道地区更敏感,在垂直方向上,表征大尺度运动特征的物理量(如位势高度、温度、风速等)在南北半球中高纬度地区的低层到高层都很敏感,尤以300 hPa最为明显,垂直速度、散度等物理量在赤道地区也非常敏感。多初值集合预报加入物理过程随机扰动后,集合平均均方根误差在积分后期略有改善,对降水预报水平也有较为明显的提高,这表明物理过程随机扰动方法具有较好的业务应用前景。 相似文献
16.
以GRAPES中尺度有限区模式作为试验模式, 从模式的不确定性方面来构造中尺度的集合预报, 重点考虑物理因子与初始条件的扰动作用。针对2004年7月10日北京城区的突发性暴雨过程进行了36 h的集合预报试验。结果表明:GRAPES模式可有效地捕捉到中尺度过程的信息; 中尺度集合预报是可行的, 可改进中尺度暴雨过程落区、强度的预报; 不同集合方案的预报结果各不相同, 同一方案各个成员的预报结果也有差异, 即存在适宜的离散度; 在离散度分析中发现在北京附近存在一个明显大值区, 且在大气中低层的垂直结构表现出一致性, 表明这一区域的预报不确定性很大。从集合检验结果中得到:单纯考虑模式物理扰动来构造中尺度集合预报系统有一定难度, 当加入初始场不确定信息后, 同时考虑模式的不确定性和初始场的不确定性, 有助于捕捉更多的中尺度系统的不确定信息, 有助于构造更为有效的中尺度集合预报系统。 相似文献
17.
In this paper,a heavy rainfall process occurring in the Huaihe River Basin during 9-10 July 2005 is studied by the new generation numerical weather prediction model system-GRAPES,from the view of different initial field effects on the prediction of the model.Several numerical experiments are conducted with the initial conditions and lateral boundary fields provided by T213 L31 and NCEP final analyses,respectively. The sensitivity of prediction products generated by GRAPES to different initial conditions,including effects of three-dimensional variational assimilation on the results,is discussed.After analyzing the differences between the two initial fields and the four simulated results,the memonic ability of the model to initial fields and their influences on precipitation forecast are investigated.Analyses show the obvious differences of sub-synoptic scale between T213 and NCEP initial fields,which result in the corresponding different simulation results,and the differences do not disappear with the integration running.It also shows that for the same initial field whether it has data assimilation or not,it only obviously influences the GRAPES model results in the initial 24 h.Then the differences reduce.In addition,both the Iocation and intensity of heavy rain forecasted by GRAPES model Further is very close to the fact,but the forecasting area of strong torrential rain has some differences from the fact.For the same initial field when it has assimilation, the 9-12-,12-24-,and 0-24-h precipitation forecasts of the model are better than those without assimilation. All these suggest that the ability of GRAPES numerical prediction depends on the different initial fields and lateral boundary conditions to some extent,and the differences of initial fields will determine the differences of GRAPES simulated results. 相似文献
18.
集合预报初始扰动能否准确反映预报误差的结构特征是决定区域集合预报质量的关键因素之一。本文针对GRAPES区域数值预报模式,发展设计了一种基于资料同化思想的混合尺度初始扰动构造新方案。该方案以全球大尺度信息为背景场,区域模式预报作为观测资料,借助GRAPES三维变分同化系统,将高质量的全球大尺度信息与区域模式预报中质量较高的中小尺度信息有效融合,构造混合尺度区域集合预报初始扰动,并通过个例试验和批量试验,比较分析了新方案和原区域集合预报的性能。试验结果表明,基于资料同化构造的初始扰动能够有效融合全球大尺度信息和中小尺度天气系统的信息,其降水概率预报更具参考价值。总体上看,区域集合预报混合初始扰动新方案能够较好地改进区域集合预报质量,尤其是对高度场和温度场效果更为显著,但对风场的集合预报性能影响略小。 相似文献
19.
DENG Guo TIAN Hu LI Xiaoli CHEN Jing GONG Jiandong JIAO Meiyan 《Acta Meteorologica Sinica》2012,26(1):52-61
To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors,three ensemble prediction systems using both initial perturbation methods but with different ensembl... 相似文献
20.
为描述GRAPES全球模式初始条件的不确定性,基于适合集合预报应用的GRAPES全球奇异向量技术,依据大气初始误差符合正态分布的特征,采用高斯取样奇异向量来构造全球集合预报初始扰动,在此基础上建立了GRAPES全球集合预报系统(GRAPES-GEPS)。利用GRAPES全球同化分析场,对采用初始扰动的GRAPES-GEPS连续试验预报结果进行检验和分析。结果表明:GRAPES-GEPS中高度场、风场及温度场预报的集合离散度能有效快速增加,集合平均均方根误差与集合离散度的关系合理;相对控制预报的均方根误差,集合平均的预报优势在预报中期非常显著。为进一步体现GRAPES-GEPS中模式物理过程的不确定性,发展了模式物理过程倾向随机扰动技术(SPPT)。试验结果表明:SPPT方案的应用有效提高了GRAPES-GEPS在南、北半球和热带地区等压面要素预报的集合离散度,同时一定程度减小了集合平均误差,进而改进了集合平均误差与集合离散度的关系,其中SPPT方案在热带地区的改进最为显著。本文发展的基于奇异向量的初始扰动方法和模式扰动SPPT方案在中国气象局2018年12月业务化运行的GRAPES-GEPS中得到了应用。 相似文献