首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents results of the lithological study of Upper Jurassic limestones, flyschoids and limestone breccias on the southern side of the Baidar Valley in the Crimean Mountains. Study of the microfacies revealed that the limestones are represented by deposits on lagoons, platform edge shoals, reefs, and forereef aprons on the carbonate platform slope. Flyschoids include deposits in the distributive turbidite channels and hemipelagic sediments in the deep-water part of the basin. Limestone breccias were formed by gravitation flows on the carbonate platform toe-of-slope and slope. The presence of gravitation deposits in the Upper Jurassic carbonate complexes of the Crimean Mountains can testify to the primary clinoform structure of this sedimentary sequence. Comparison of the obtained sedimentological data made it possible to reconstruct the facies model of the Crimean carbonate platform and main episodes of its formation. Development of the carbonate shelf was related to two transgressive-regressive cycles. A dome-shaped reef was formed away from the coast at the initial (Oxfordian) stage. The carbonate platform was formed at the early Kimmeridgian lowstand stage when sediments were deposited in the internal part of the platform adjacent to land. In the late Kimmeridgian and early Tithonian, configuration of the carbonate platform profile resembled a distally steepened ramp, and its active progradation and shelf expansion took place in the course of transgression. Regression in the late Tithonian–early Berriasian led to regressive transformation of the ramp into platform with a flattened shallow-water shelf. Tectonic deformations at the Jurassic/Cretaceous transition promoted the formation of megabreccias on the carbonate platform foreslope. The tectonically reworked rock sequence of the “extinct” carbonate platform was overlapped transgressively by the upper Berriasian or lower Valanginian, relatively deep-water deposits of the Cretaceous platform cover.  相似文献   

2.
The Jurassic succession of Rocca Busambra consists of two lithostratigraphic units: a pile of peritidal limestones several hundreds of metres thick (Inici Formation: Hettangian to Sinemurian) and a 2 to 15 m thick sequence of Rosso Ammonitico‐type pelagic limestones (Toarcian? to lowermost Berriasian). An extensive interval of non‐deposition is evidenced by a thick Fe–Mn oxide crust on the bounding disconformity and is recorded partially in the material contained within a complex network of neptunian dykes and sills. Seven lithofacies are distinguished in the Rosso Ammonitico. These lithofacies show that the Rosso Ammonitico limestones differ from most analogues both in Sicily and elsewhere: sediments are mostly grain‐supported and non‐nodular; obviously bottom currents were important during deposition of these sediments. These currents were pulsating at different frequencies and induced winnowing, intraclast production and early cement precipitation. Other Rosso Ammonitico lithosomes of Late Jurassic to earliest Cretaceous age, usually decimetre thick and discontinuous, overlie the Inici Formation without any Fe–Mn crust; their anomalous stratigraphical and geometrical relationships show that they were deposited on an inclined, stepped, erosional surface incised in the sub‐horizontal Inici Formation. This ancient escarpment is interpreted as the result of a mainly gravitational collapse of the margin of a pelagic plateau. Such mass wasting was probably due to the backstepping of the tectonic plateau–basin margin that is not observable directly, but may be inferred from circumstantial evidence. This observation clearly shows that tectonic activity affected the Rocca Busambra sector of the West Tethys continental margins a few tens of millions of years after the end of the rifting stage. The anomalous Rosso Ammonitico sediments are the only indication of the escarpment and their occurrence in the stratigraphic record is probably more widespread than reported in the literature. More accurate palaeoenvironmental and palaeogeographic reconstructions may depend on the identification of these sediments.  相似文献   

3.
The Aptian to lowermost Albian carbonate platform of Castro Urdiales (Cantabria, northern Spain) was broken up by extensional tectonic movements shortly after the beginning of the Albian. Block faulting characterized this rifting episode, the effects of which waned during the Albian. In crestal locations tilting of the fault blocks caused the subaerial exposure of parts of the older platform, resulting in intense karst diagenesis. Differential subsidence of the blocks controlled the development of a crestal residual carbonate platform (Arenillas), which was surrounded by deeper water on both sides. Seven unconformities related to platform exposure and karstification are identified on the Arenillas platform, and form the basal boundaries of seven depositional sequences (S1-S7). On the platform, lowstand systems tract deposits consist of breccias filling caves, and grainstones and debris flow deposits filling incised canyons. Transgressive plus highstand systems tracts consist of rare marls plus shallow water rudistid, coral and chondrodontid limestones. In the basin, the unconformities are erosional surfaces at the base of resedimented limestones, marls or sandy or silty siliciclastics (lowstand systems tracts). Transgressive plus highstand systems tracts in this setting consist of marls and hemipelagic marly limestones. Tectonism is believed to be the main control on sequence formation, and only a few sequence boundaries (e.g. the base of S6 in the Upper Albian inflatum Zone) can be correlated with eustatic events.  相似文献   

4.
Syn-rift sediments in basins formed along the future southern continental margin of the Jurassic Tethys ocean, comprise, in the eastern Alps of Switzerland, up to 500 m thick carbonate turbidite sequences interbedded with bioturbated marls and limestones. In the fault-bounded troughs no submarine fans developed; in contrast, the fault scarps acted as a line source and the asymmetric geometry as well as the evolution of the basin determined the distribution of redeposited carbonates. The most abundant redeposits are bio- and lithoclastic grainstones and packstones, with sedimentary structures indicating a wide range of transport mechanisms from grain flow to high- and low-density turbidity currents. Huge chaotic megabreccias record catastrophic depositional events. Their main detrital components are Upper Triassic shallow-water carbonates and skeletal debris from nearby submarine highs. After an event of extensional tectonism, sedimentary prisms accumulated in the basins along the faults. Each prism is wedge-shaped with a horizontal upper boundary and consists of a thinning- and fining-upward megacycle. Within each megacycle six facies associations are distinguished. At the base of the fault scarp, an association of breccias was first deposited by submarine rockfall and rockfall avalanches. A narrow, approximately 4000 m wide depression along the fault was subsequently filled by the megabreccia association, in which huge megabreccias interfinger with thin-bedded turbidites and hemipelagic limestones. The thick-bedded turbidite association covered the megabreccias or formed, farther basinward, the base of the sedimentary column. Within the thick-bedded turbidites, thinning- and fining-upward cycles are common. The overlying thin-bedded turbidite association shows nearly no cyclicity and the monotonous sequence of fine-grained calciturbidites covers most of the basin area. With continuous filling and diminishing sediment supply, a basin-plain association developed comprising fine-grained and thin-bedded turbidites intercalated with bioturbated marls and limestones. On the gentle slopes opposite the fault escarpment, redeposited beds are scarce and marl/limestone alternations as well as weakly nodular limestones prevail.  相似文献   

5.
The Julian Alps are located in NW Slovenia and structurally belong to the Julian Nappe where the Southern Alps intersect with the Dinarides. In the Jurassic, the area was a part of the southern Tethyan continental margin and experienced extensional faulting and differential subsidence during rifting of the future margin. The Mesozoic succession in the Julian Alps is characterized by a thick pile of Upper Triassic to Lower Jurassic platform limestones of the Julian Carbonate Platform, unconformably overlain by Bajocian to Tithonian strongly condensed limestones of the Prehodavci Formation of the Julian High. The Prehodavci Formation is up to 15 m thick, consists of Rosso Ammonitico type limestone and is subdivided into three members. The Lower Member consists of a condensed red, well-bedded bioclastic limestone with Fe–Mn nodules, passing into light-grey, faintly nodular limestone. The Middle Member occurs discontinuously and consists of thin-bedded micritic limestone. The Upper Member unconformably overlies the Lower or Middle Members. It is represented by red nodular limestone, and by red-marly limestone with abundant Saccocoma sp. The Prehodavci Formation unconformably overlies the Upper Triassic to Lower Jurassic platform limestone of the Julian Carbonate Platform; the contact is marked by a very irregular unconformity. It is overlain by the upper Tithonian pelagic Biancone (Maiolica) limestone. The sedimentary evolution of the Julian High is similar to that of Trento Plateau in the west and records: (1) emergence and karstification of part of the Julian Carbonate Platform in the Pliensbachian, or alternatively drowning of the platform and development of the surface by sea-floor dissolution; (2) accelerated subsidence and drowning in the Bajocian, and onset of the condensed pelagic sedimentation (Prehodavci Formation) on the Julian High; (3) beginning of sedimentation of the Biancone limestone in the late Tithonian.  相似文献   

6.
In the Concarena‐Pizzo Camino Massif (Lombardy Basin, Southern Alps, Italy) the lateral transition from Ladinian‐Carnian carbonate platforms to coeval intraplatform basins is preserved. The succession records the sedimentological evidence of a sea‐level fall on a flat‐topped platform with a narrow marginal reef rim and its effects in the adjacent deeper‐water basin. Repeated high‐frequency exposures of the platform top are recorded by a peritidal–supratidal succession that overlies subtidal inner platform facies of the former highstand system tract (HST). On the slope and in the basin, the sea‐level fall is recorded by a few metre thick succession of bioclastic packstones. These facies directly lie on coarse clinostratified breccia bodies (slope facies of the former HST) or on resedimented, well‐bedded, dark laminated limestones (basinal facies of the HST). This facies distribution indicates that during the sea‐level fall carbonate production on the platform top decreased rapidly and that sedimentation in the basin was mainly represented by condensed facies. Microfacies record an enrichment, during low stand, in pelagic biota (packstones with radiolarians and spiculae), whereas the occurrence of platform‐derived, shallow‐water materials is limited to thin lenses of reworked and micritized Fe‐rich oolites and bioclasts (mainly pelecypods and echinoderms). The facies association in the Concarena‐Pizzo Camino Massif demonstrates that a highly‐productive carbonate factory was almost completely turned off during the emergence of the platform top at a sequence boundary, leading to low‐stand starvation in the basin. The reconstruction of the stratigraphic evolution of the Concarena‐Pizzo Camino carbonate platform therefore represents a significant case history for the study of the behaviour of ancient carbonate systems during a fall in sea‐level, independent of its origin (eustatic or tectonic).  相似文献   

7.
In the Vélez Blanco region (province of Almeia), filament limestones occur associated with pellet limestones, crinoidal limestones, radiolarian limestones, Saccocoma limestones and tintinnid limestones. These predominantly Late Jurassic rocks are underlain by Middle Jurassic oolitic limestones and overlain by Cretaceous pelagic limestones and marls.A distinction can be made between long and short filaments. The former are interpreted as undamaged valves, the latter as shell fragments of the pelagic pelecypod Bositra buchi. Bositra valves and fragments have been sorted by weak current (and/or wave) action.In the Saccocoma limestones, evidence for similar sorting of Saccocoma debris has been found.The radiolarian limestones represent a low-energy basin environment, but are not comparable with recent deep-sea radiolarian oozes.Nodular limestone intercalations and hiatuses represent a current- (and/or wave-) swept environment.The occurrence of filament-rich and Radiolaria-bearing, but benthos-poor, intervals within the oolitic limestone indicates that the deposition of such rocks can take place at moderate sea depths.  相似文献   

8.
As a result of early Variscan tectonic movements and of differential subsidence, a platform and basin topography was created along the northern margin of the Sahara Craton during the late Devonian. In the Moroccan Anti-Atlas Mountains, the Tafilalt Platform is an approximately N-S running ridge which developed since the late Middle Devonian. It separated a slowly subsiding shallow basin in the east (Tafilalt Basin) from a rapidly subsiding furrow in the west (Mader Basin). Platform deposits are characterized by highly reduced thicknesses, shallow subtidal to supratidal deposits in the late Frasnian and by unconformities at the Lower/Upper Frasnian and the Frasnian/Famennian boundaries. After a local transgression over emergent areas in the north, water depth probably never reached more than several tens to about 100 m in the lower Famennian. Cephalopod limestones of this age, deposited on the platform, represent a very diverse facies pattern comprising quartz-rich brachiopod coquinas, crinoidal limestones, thick-bedded cephalopod limestones and nodular limestones. Sedimentation rates ranged from 1 to 5 mm/ 1000 yr. In the late Famennian more uniform marl and nodular limestone facies suggest slightly deeper environments. Platform margins are characterized by higher rates of subsidence, debris flow deposits and slump structures. In the relatively shallow Tafilalt Basin, marls with intercalated nodular limestones were deposited. In the Mader Basin, sandy and calcareous turbidites suggest deeper water conditions in the late Devonian. During the Strunian/Tournaisian the whole area was overwhelmed by a thick deltaic sequence. The general facies distribution is in agreement with depositional models of other Upper Devonian and Lower Carboniferous cephalopod limestones in the European Variscan orogenic belts. In all these cases, condensed cephalopod limestones occupy a distinct palaeogeographic position in predictable facies sequences that reflect pre-orogenic phases in the Variscan geodynamic cycle. Moreover, close parallels exist with condensed sequences in the Triassic and Jurassic that occur in a very similar position within the Alpine orogenic cycle.  相似文献   

9.
对新疆柯坪地区中奥陶统灰岩和泥岩交互沉积地层中的结核状灰岩的沉积环境和形成机制进行了研究。根据野外观察并结合室内偏光显微镜下阴极发光和染色等方法分析其结构和构造特征,发现有团块状、网纹状、透镜状3种结核状灰岩。运用X光衍射仪和质谱仪等化学分析手段对其常量元素、微量元素、碳氧同位素、酸不溶物等进行了测定。综合分析矿物、岩石、生物和地球化学特征,认为它们形成于陆棚中水体较深的沉积环境,灰岩和泥岩交互韵律层是在表层洋流、大洋底流和物源供给的周期变化作用下形成的。结核状灰岩形成于沉积-成岩早期阶段,它们的形成机制分别是:团块状灰岩是在洋流活动后的平静期因水体中碳酸钙沿凝结核凝结、增大、胶结而形成;网纹状灰岩是在盐度不饱和的深海底流的周期作用下冲刷同生期沉积的碳酸盐灰泥而形成;透镜状灰岩是通过上覆水体与沉积物的差异压实作用而形成的。  相似文献   

10.
西藏甲马弧内盆地的形成演化   总被引:1,自引:1,他引:1       下载免费PDF全文
位于西藏冈底斯带的甲马弧内盆地是随着甲马岛弧的发育而产生的,沉积了一套演浅海相活动大陆边缘的沉积物,主要由碎屑岩与海绵礁灰岩构成,在盆地内的上侏罗统至白垩系中,共识别出七个3级层序,包括1个I类层序和6个Ⅱ类层序,重新建立了该区层序地层年代格架,层序地层的研究表明,盆地的演化可划分为具深切谷的碎屑陆架阶段,碳酸盐台地与海绵礁形成阶段,滞流的碎屑陆架阶段,无障壁海岸的碎屑陆架阶段和具障壁海岸的碎屑陆架5个阶段。  相似文献   

11.
Middle Jurassic radiolarites and associated pelagic limestones occur in the Rondaide Nieves unit of the Betic Cordillera, southern Spain. The Rondaide Mesozoic includes: (a) a thick succession of Triassic platform carbonates, comparable to the Alpine Hauptdolomit and Kössen facies; (b) Lower Jurassic pelagic limestones comparable to the Alpine Hierlatz and Adnet facies; (c) the Middle Jurassic Parauta Radiolarite Formation, described herein; and (d) a thin Upper Jurassic-Cretaceous condensed limestone succession. The Parauta Radiolarite Formation and associated limestones were studied with respect to stratigraphy, petrography, micropalaeontology (radiolarians, calcareous nanno- and microfossils) and facies. Radiolarite sedimentation occurred in the Middle Bathonian in a restricted and dysoxic deep Nieves basin, perched in the distal zone of a continental margin fringing the Tethyan ocean. This margin was adjacent to a young narrow oceanic basin between the South-Iberian margin and a continental block called Mesomediterranean Terrane. The Nieves basin was part of a marine corridor between the Proto-Atlantic and Piedmont-Ligurian basins of the Alpine Tethys. The regional tectonic position, the stratigraphical evolution since the Triassic, the age and the nature of the Mesozoic facies and the palaeogeographic relations to adjacent domains show striking analogies between the Betic Rondaide margin and coeval units of the Alps.  相似文献   

12.
Three successive Mesozoic neptunian dyke generations and related unconformities suggest recurrent extensional fracturing and periods of relative sea-level rise along the NW Trento Plateau margin in the Southern Alps, Italy. The first neptunian dyke generation was induced by NNW–SSE directed extension of Early Jurassic skeletal oolitic periplatform deposits generating micritic early Middle Liassic neptunian dykes with orthogonal orientation. The second generation of neptunian dykes was possibly caused by marginal extension at the drowned platform edge penetrating Late Jurassic, red pelagic limestones with a pelagic matrix of Albian/Cenomanian age and nearly orthogonal fracture orientation. The third generation of neptunian dykes occurred after a prolonged period of submarine exposure and erosion (Aptian/Albian to Late Maastrichtian) during the rapid burial of the submarine Trento Plateau margin relief. The Late Maastrichtian neptunian dykes were caused by extension of Early to Middle Jurassic oolitic periplatform limestones along steep (inclination > 10°) submarine slopes. Generally successive neptunian dyke generations along drowned carbonate platform margins could be caused by repeated extensional brittle fracturing of lithified periplatform deposits and the filling of micritic matrix derived from overlying pelagic sediment sequences under substantial hydrostatic pressure. This would suggest that recurrent extensional fracturing is continuously recorded by neptunian dyke formation which could be used to indicate extensional tectonic activity at a foundering deep-marine carbonate platform edge.  相似文献   

13.
This study analyses and discusses well preserved examples of Late Jurassic structures in the Northern Calcareous Alps, located at the Loferer Alm, about 35 km southwest of Salzburg. A detailed sedimentary and structural study of the area was carried out for a better understanding of the local Late Jurassic evolution. The Grubhörndl and Schwarzenbergklamm breccias are chaotic, coarse-grained and locally sourced breccias with mountain-sized and hotel-sized clasts, respectively. Both breccias belong to one single body of breccias, the Grubhörndl breccia representing its more proximal and the Schwarzenbergklamm breccia its more distal part, respectively. Breccia deposition occurred during the time of deposition of the Ruhpolding Radiolarite since the Schwarzenbergklamm breccia is underlain and overlain by these radiolarites. Formation of the breccias was related to a major, presumably north-south trending normal fault scarp. It was accompanied and post-dated by west-directed gravitational sliding of the Upper Triassic limestone (“Oberrhätkalk”), which was extended by about 6% on top of a glide plane in underlying marls. The breccia and slide-related structures are sealed and blanketed by Upper Jurassic and Lower Cretaceous sediments. The normal fault scarp, along which the breccia formed, was probably part of a pull-apart basin associated with strike slip movements. On a regional scale, however, we consider this Late Jurassic strike-slip activity in the western part of the Northern Calcareous Alps to be synchronous with gravitational emplacement of “exotic” slides and breccias (Hallstatt mélange), triggered by Late Jurassic shortening in the eastern part of the Northern Calcareous Alps. Hence, two competing processes affected one and the same continental margin.  相似文献   

14.
Barremian-Lower Aptian platform carbonates (“Urgonian limestones”) of the northern margin of the Istanbul zone extend from Zonguldak to the Kurucasile area along the Black Sea coast. New stratigraphic data on the “Inpiri” Formation of the Inpiri-Kurucasile area are based on the identification of calcareous algae, foraminifera, and rudists. They show that this lithostratigraphic unit is stratigraphically and lithologically equivalent to the Ökü?medere Formation from Zonguldak. Some of the biostratigraphic markers are reported for the first time in Anatolia. Foraminifera are represented by several forms with a significant biostratigraphic potential used to distinguish the Barremian from the lower Aptian. Lower Aptian beds also yield relatively advanced caprinid rudists.The Ökü?medere Formation is relatively thin, terrigeneous-rich, and rudist-free or rudist-poor in the Kurucasile sector, and thick, terrigeneous-poor, and rudist-rich from Amasra to Zonguldak, with a set of marker beds including either charophytes or Palorbitolina and capped by a coral unit underlying ammonite bearing marls. Terrigeneous-rich carbonates from the eastern sector are interpreted as marginal marine coastal, infralittoral environments and grade distally, northward, to marly basinal sediments. By contrast “Urgonian type” limestones from the Zonguldak-Amasra region possess a wide extent and no transition to coastal or basinal sediments has been observed. A transition from a typical platform westward to a mixed siliciclastic-carbonate ramp eastward was controlled by both the nature of the adjacent exposed area and tectonic factors affecting the overall continental margin that is a northward downwarping. The exposed area was flanked southward by a belt of coastal siliciclastics grading southward and eastward to deep water sediments of the Ulus basin. In mid-Bedoulian time, carbonate platform demise from the western region was drowned below deeper marly sediments whereas the eastern siliscilastic-carbonate ramp was buried below coastal clastics.  相似文献   

15.
Upper Cambrian carbonates in western Maryland are comprised of platform facies (Conococheague Limestone) west of South Mountain and basin facies (Frederick Limestone) east of South Mountain. Conocheague platform carbonates contain interbedded non-cyclic and cyclic facies. Non-cyclic facies consist of cross-stratified grainstones, thrombolitic bioherms, and graded, thin-bedded dolostones. These were deposited in shallow, subtidal shelf lagoons. Cyclic facies are composed of repeated sequences of cross-stratified grainstone; ribbon-rock; wavy, prism-cracked laminite; and planar laminated dolostone. The cyclic facies are shallowing-upward cycles produced by lateral progradation of tidal flats over shallow, nearshore subtidal environments. Cyclic and non-cyclic facies are interbedded in the Conococheague in a layer cake fashion, but no higher-order cyclicity can be found. The Frederick Limestone is dominated by monotonously thick sequences of graded, thin-bedded limestones, interbedded with massive peloidal grainstones and beds of breccia up to 10 m thick in the lower Frederick. The breccias contain transported megaclasts of Epiphyton-Girvanella boundstones. The basal Frederick was deposited in a slope-to-basinal setting east of a rimmed shelf. An Epiphyton-Girvanella marginal reef along the shelf edge was the source of the blocks in the breccias. The upper Frederick Limestone formed on a carbonate ramp.  相似文献   

16.
The distributions of stable carbon and oxygen isotopes in modern and ancient limestones of various types were studied. Carbonate samples from modern sediments were collected in the Black and Barents Seas. Ancient carbonates were represented by Upper Jurassic (Kimmeridgian-Tithonian) limestones from the central part of the West Siberian basin. Carbonate samples include remains of modern and Upper Jurassic fauna, carbonate crust from sediments of the Black Sea, carbonate tube from sediments of the Barents Sea, and Upper Jurassic limestone from the carbonate layer found at top of Abalak, bottom of Bazhenov deposits in the central part of the West Siberian basin. According to the results of the isotope analysis and comparison with modern carbonates, Upper Jurassic limestones of the West Siberian basin belong to the group of methane-derived carbonates and precipitated as a result of anaerobic oxidation of methane (AOM). Fractures in limestones are filled with secondary calcite.  相似文献   

17.
Peritidal carbonate rocks (Purbeck facies) of the uppermost Portlandian to Berriasian in the type section of the Sierra del Pozo Formation in the Prebetic Zone, southern Spain, are divisible into 141 shallowing upward cycles averaging 2 m in thickness. The subtidal facies in these cycles consist of micritic or marly limestones with dasycladacean algae and lituolids; the intertidal facies are micritic limestones containing birdseyes and miliolids; the supratidal facies comprise laminated algal limestones, the tops of which display desiccation cracks and rhizocretions, or more locally palaeosols, calcretes, or palaeokarst surfaces. A statistical study, using power spectra of the Fast Fourier Transform, demonstrates that the periodicity of these cycles is in the Milankovitch frequency band. Most sedimentary cycles correspond to the obliquity cycles; eccentricity and precession cycles have also been recognized. Using a Fischer plot, third-order tectono-eustatic cycles are recognized, which can be correlated with the eustatic curve of the Exxon chart. The shallowing upward sequences are characterized by a distinctive pattern of geochemical parameters. Carbon and oxygen isotopic (δ13C and δ18O) variations, calcium and magnesium carbonate contents and the abundance of organic matter and trace elements (Mn and Sr) all have predictable patterns of distribution within the sequences. The Sr content of the subtidal facies is relatively high whereas the δ13C and δ18O ratios are quite low; in the intertidal facies the Sr and Mn levels fall concomitantly with a rise in δ13C and δ18O. The highest δ13C and δ18O values occur in the lower part of the supratidal facies, whereas in the upper part of δ values and Sr contents drop sharply. Cyclic variations in evaporation and in meteoric water influence, determined from oxygen isotopic composition, reveal that the cyclicity of the beds containing the most limestones (supratidal) and those with the most marls (subtidal) is related to climatic changes. The coldest periods are those represented by supratidal deposits, when the sea level was at its lowest. During the warmest periods, when the overall sea level was higher, subtidal deposits accumulated in the region. A genetic model is proposed, according to which the asymmetrical sedimentary cycles occur in response to glacio-eustatic changes with a periodicity similar to that of Plio-Pleistocene sea-level variations, but with a much lower range due to the smaller extent of polar ice caps during the Early Cretaceous. The glacio-eustatic changes involved a rapid sea-level rise and a slow sea-level fall.  相似文献   

18.
Large areas of southern Australia and New Zealand are covered by mid‐Tertiary limestones formed in cool‐water, shelf environments. The generally destructive character of sea‐floor diagenesis in such settings precludes ubiquitous inorganic precipitation of carbonates, yet these limestones include occasional units with marine cements: (1) within rare in situ biomounds; (2) within some stacked, cross‐bedded sand bodies; (3) at the top of metre‐scale, subtidal, carbonate cycles; and (4) most commonly, associated with certain unconformities. The marine cements are dominated by isopachous rinds of fibrous to bladed spar, interstitial homogeneous micrite and interstitial micropeloidal micrite, often precipitated sequentially in that order. Internal sedimentation of microbioclastic micrite may occur at any stage. The paradox of marine‐cemented limestone units in an overall destructive cool‐water diagenetic regime may be explained by the precipitation of cement as intermediate Mg‐calcite from marine waters undersaturated with respect to aragonite. In some of the marine‐cemented limestones, aragonite biomoulds may include marine cement/sediment internally, suggesting that dissolution of aragonite can at times be wholly marine and not always involve meteoric influences. We suggest that marine cementation occurred preferentially, but not exclusively, during periods of relatively lowered sea level, probably glacio‐eustatically driven in the mid‐Tertiary. At times of reduced sea level, there was a relative increase in both the temperature and the carbonate saturation state of the shelf waters, and the locus of carbonate sedimentation shifted towards formerly deeper shelf sites, which now experienced increased swell wave and/or tidal energy levels, fostering sediment abrasion and reworking, reduced sedimentation rates and freer exchange of sediment pore‐waters. Energy levels were probably also enhanced by increased upwelling of cold, deep waters onto the Southern Ocean margins of the Australasian carbonate platforms, where water‐mass mixing, warming and loss of CO2 locally maintained critical levels of carbonate saturation for sea‐floor cement precipitation and promoted the phosphate‐glauconite mineralization associated with some of the marine‐cemented limestone units.  相似文献   

19.
In the long Precambrian period, stromatolitic carbonate successions were very common. However, the non-stromatolitic carbonate succession that is marked by subtidal deposits shows a sharp contrast to the stromatolitic carbonate succession. Both the non-stromatolitic and the stromatolitic carbonate successions are important clues for the further understanding of the evolving carbonate world of the Precambrian. The Mesoproterozoic Gaoyuzhuang Formation at the Qiangou section in northwestern suburb of Beijing is a set of more than 1000 m-thick carbonate strata that can be divided into four members (or subformations), in which a non-stromatolitic carbonate succession marked by the scarcity of stromatolites makes up the third member of the formation. This non-stromatolitic carbonate succession can further be subdivided into three third-order sequences that are marked by the regular succession of sedimentary facies. In third-order sequences, a lot of subtidal carbonate meter-scale cycles made up of medium-bedded leiolite limestones and thin-bedded marls constitute their transgressive system tracts (TSTs) and the early high-stand system tracts (EHSTs), a lot of meter- scale cycles made up by thin-bedded limestones and marls constitute their condensed sections (CSs), and thick-bedded to massive dolomitic limestones or lime dolomites make up the late high-stand system tracts (LHSTs). The particularly non-stromatolitic carbonate succession making up the third member of the Mesoproterozoic Gaoyuzhuang Formation at the Qiangou section might be the representative of the non-stromatolitic carbonate succession of the Precambrian because of its special lithological features and particular sedimentary structures, and its general sedimentary features are helpful and meaningful for the further understanding of the evolution rules of the sophisticate and evolving carbonate world of the Precambrian. The time scale of the Gaoyuzhuang Formation is deduced as that from 1600 Ma to 1400 Ma; thus, the non-stromatolitic  相似文献   

20.
The results of our new paleomagnetic investigations on 21 sites in the Cévennes and Lure regions as well as previous studies demonstrate that all Mesozoic marly limestones of SE France exhibit similar paleomagnetic behavior with remagnetization disputed in age. The studied areas have the particularity to have been folded before (Late Eocene), the Alpine folding (Oligo–Miocene). Samples (201 marly limestones) dated from Lower Jurassic to Lower Cretaceous have been demagnetized by thermal treatment. They all present a well-defined component with a normal polarity which was mostly obtained between 200 and 350 °C. Numerous arguments lead from pretectonic to syntectonic widespread remagnetization related to orogenic fluid circulation affecting the whole basin. An Eocene age (between 35 and 40 Ma) is obtained for this remagnetization thanks both to the comparison of the average inclination of all regional paleomagnetic studies (+54.9°/−1.5°) with the expected paleomagnetic inclination and the syntectonic character of remagnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号