首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hairy ball model of coronal magnetic fields has a spherical source surface separating potential and radial magnetic fields. In the present model the source surface is chosen such that the wind speed equals the Alfvénic speed at selected points on the source surface. Results have been obtained for a dipole base field and an isothermal corona.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

2.
The relations of cosmic-ray fluctuations to those of interplanetary magnetic fields (IMF) and the possible consequences of the magnetic helicity of IMF for the acceleration of cosmic rays are examined using experimental data from two neutron monitors and data on IMF in interplanetary space.The spectral tensor of IMF at two different distances from the Sun is determined for several selected intervals of 10–15 hours duration. Data from IMP-8 and Helios-1 are used. Cross correlations of IMF with cosmic rays measured by the Lomnický tít neutron monitor, based on 5 min data, are estimated. A comparison of spectral slopes of the power spectrum density at the Lomnický tít and Calgary neutron monitors demonstrates the possibility of using a single neutron monitor data point as a representative of the CR fluctuation power spectrum slope. It is shown that the data are not in all cases consistent with model of 3D turbulence in interplanetary space as the cause of the cosmic-ray fluctuation spectrum. Magnetic helicity, kinetic fluctuation energy, and the correlation length of the magnetic field are deduced from the limited amount of data and compared with values obtained by Matthaeus and Goldstein (1982). Based on the theoretical approach by Fedorovet al. (1992) the efficiency of acceleration of cosmic rays due to the presence of anisotropic reflective non-invariant IMF at various heliospheric distances is estimated.  相似文献   

3.
A kinematic model of the stationary electromagnetic fields in interplanetary space with finite conductivity is considered. The electrodynamic problem is solved for a medium with uniform conductivity and radial plasma outflow from a spherical source. Simple analytical formulae are obtained for electric and magnetic fields, currents and charges in the case of a uniformly-magnetized rotating sphere.  相似文献   

4.
We show that the non-radial field-boundary condition (or the line-of-sight boundary condition) for the Laplacian-like equation developed by Bogdan and Low (1986) is sufficient to uniquely determine the model coronal magnetic field provided the electric currents are horizontal (or zero, the current-free case) at the solar surface as well as in the solar atmosphere between the photosphere and the source surface. The derived recursion formulae for the spherical harmonic coefficients can be used to determine the spherical harmonic coefficients in the solutions of the horizontal current models very efficiently.  相似文献   

5.
The magnetic field in the outer corona and in interplanetary space has been calculated from the photospheric magnetic fields measured around the time of the 7 March, 1970 eclipse. The field-line maps are compared with eclipse photographs showing coronal structures out to about 12 r . The projected field lines as well as the observed streamers appear straight. This is caused by the rapid expansion of the outer corona and is not an indication of corotation. The calculations show that the angular velocity of the coronal plasma decreases rapidly with distance.The relation between magnetic fields and density enhancements is discussed. The field strength in the photosphere seems to determine the amount of mechanical heating of the lower corona. The density structure higher up in the corona will, however, depend decisively on the topology of the field, particularly on whether we are on open or closed field lines, and not simply on field strength.The calculations show a sector structure of the interplanetary field, which agrees well with spacecraft observations. Also the magnitudes of the observed and calculated interplanetary field agree after the Mt. Wilson magnetograph data have been corrected to account for the temperature and saturation effects in the spectral line Fei 5250 Å.On leave from the Astronomical Observatory, Lund, Sweden.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
The evolution of coronal magnetic fields   总被引:1,自引:0,他引:1  
Slow photospheric motions can produce flow speeds in the corona which are fast enough to violate quasi-static evolution. Therefore, high-speed flows observed in the corona are not necessarily due to a loss of equilibrium or stability. In this letter we present an example where the flow speed increases indefinitely with, height, while the coronal magnetic energy increases quadratically with time.  相似文献   

7.
Spectroheliograms obtained with the Naval Research Laboratory's Extreme Ultraviolet Spectrograph (S082A) on Skylab are compared with Kitt Peak National Observatory magnetograms. A principal result is the characteristic reconnection of flux from an emerging bipolar magnetic region to previously existing flux in its vicinity. Examples of the disappearance of magnetic flux from the solar atmosphere are also shown. The results of a particularly simple, potential field calculation are shown for comparison with the Skylab observations.  相似文献   

8.
A. Hood  U. Anzer 《Solar physics》1988,115(1):61-80
Conditions under which cool condensations can form in the solar corona are investigated using the powerful phase plane method to analyse the energy and hydrostatic balance equations. The importance of the phase plane approach is that the conclusions deduced are not sensitive to the actual choice of boundary conditions adopted which only determine the actual contour. The importance of heating variations and area divergence are studied as well as the influence of gravity for their effect on the formation of cool condensations. The cool temperature at which optically thin radiation and heating balance is important and the links with other cool solutions are mentioned.  相似文献   

9.
We analyze spectra taken with the 40 cm coronograph at Sacramento Peak Observatory, for evidence of Stark effect on Balmer lines formed in coronal magnetic structures. Several spectra taken near the apex of a bright post-flare loop prominence show significant broadening from H10 to the limit of Balmer line visibility in these spectra, at about H20 The most likely interpretation of the increasing width is Stark broadening, although unresolved blends of Balmer emissions with metallic lines could also contribute to the trend. Less significant broadening is seen in 3 other post-flare loops, and the data from 5 other active coronal condensations observed in this study show no broadening tendency at all, over this range of Balmer number. The trend clearly observed in one post-flare loop requires an ion density of n i ? 2 × 1012 cm?3, if it is to be explained entirely as Stark effect caused by pressure broadening. But mean electron densities measured directly from the Thomson scattering at λ3875 in the same SPO spectra, yield n e ? 3?7 × 1010 cm?3 for the same condensations observed within that loop. Comparison of this evidence from electron scattering, with densities derived from emission measures and line-intensity ratios, argues against a volume filling factor small enough to reconcile the values of n i and n e derived in this study. This discrepancy leads us to suggest that the Stark effect observed in these loops, and possibly also in flares, could be caused by macroscopic electric fields, rather than by pressure broadening. The electric field required to explain the Stark broadening in the brightest post-flare loop observed here is approximately 170 V cm?1. We suggest an origin for such an electric field and discuss its implications for coronal plasma dynamics.  相似文献   

10.
We present a set of cylindrically-symmetric force-free magnetic fields with non-constant scalar function scalar. We found that the kink instability of the fields can be suppressed by reducing the length of the flux tube. By using the pressure profile in coronal magnetic loops obtained on the basis of the observational data, and by neglecting the effect of gravity, these force-free fields ars modified to non-force-free ones. For the plasma of finite conductivity the time and space dependent magnetic fields are obtained, and the ohmic dissipation per unit volume per second is calculated. For the magnetic fields, presented in the investigation, it is also found that, due to the large electrical conductivity of the plasma, the ohmic dissipation is negligable in comparison to the conduction and the radiation loss. Hence, for the energy equilibrium in a coronal loop, the contribution of ohmic dissipation is insignificant.  相似文献   

11.
Y. R. Chou  B. C. Low 《Solar physics》1994,153(1-2):255-285
Three-dimensional, quasi-static evolutions of coronal magnetic fields driven by photospheric flux emergence are modeled by a class of analytic force-free magnetic fields. Our models relate commonly observed photospheric magnetic phenomena, such as the formation and growth of sunspots, the emergence of an X-type separator, and the collision and merging of sunspots, to the three-dimensional magnetic fields in the corona above. By tracking the evolution in terms of a continuous sequence of force-free states, we show that flux emergence and submergence along magnetic neutral lines in the photosphere are essential processes in all these photospheric phenomena. The analytic solutions we present have a parametric regime within which the magnetic energy attained by an evolving force-free field may be of the order of 1030 ergs to several 1031 ergs, depending on the magnetic environment into which an emerging flux intrudes. The commonly used indicators of magnetic shear in magnetogram interpretation are discussed in terms of field connectivity in our models. It is demonstrated that the crossing angle of the photospheric transverse magnetic field with the neutral line may not be a reliable indicator of the magnetic shear in the coronal field above, due to the complexity of three-dimensionality. The poorly understood constraint of magnetic-helicity conservation on the availability of magnetic free energy for a flare is briefly discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
McClymont  A. N.  Craig  I. J. D. 《Solar physics》1987,113(1-2):131-136
Solar Physics - The high degree of symmetry often assumed in studies of the structure and stability of coronal magnetic field configurations is restrictive and can yield misleading results. We have...  相似文献   

13.
The high degree of symmetry often assumed in studies of the structure and stability of coronal magnetic field configurations is restrictive and can yield misleading results. We have therefore developed fully three-dimensional numerical methods for constructing force-free equilibria and for examining their stability properties, which make no assumptions about symmetry. A test of the stability analysis has been performed by applying it to the Gold-Hoyle twisted flux tube, which is known to be kink-unstable if the helical field makes more than about one turn between the line-tying end-plates. Our preliminary result is that the critical number of turns is about 1.1, in good agreement with the previous best estimate. However, we find that the growth rate, which has not been discussed previously, is orders of magnitude smaller than expected, even when the flux tube is twisted far beyond the stability limit.  相似文献   

14.
Loop-like white light coronal transients are generally believed to be nearly planar sheets which are thin compared to the loop extent; however, this picture may be questioned since virtually no observations (of the more than 100 transient events observed during 1973–74 Skylab period) show such loops edge-on. From the group of transient events studied by Munro etal. (1979) for which definite surface associations exist, we find loop transients are strongly correlated with filament regions where the filament axis was oriented north-south. From direct soft X-ray observations of an expanding arch, the possible identification of the soft X-ray signature of footpoints of transient loops, and monochramatic observations of low coronal loops, we infer that loop-like coronal transients have their origin in low-lying coronal loops nearly co-planar with the north-south aligned filament axis. The situation with respect to non-loop events is less clear; such events apparently often arise from more complex filament geometries. Possible reasons for the preference of transients to arise from north-south filament-oriented regions are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
Solar Physics - Coronal electric currents are superposed on the calculated large-scale current-free (potential) magnetic field of the solar corona and the new magnetic configurations are mapped....  相似文献   

16.
Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga (1982) and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking; six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected control periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear; proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients.  相似文献   

17.
The formation of solar-wind stream structure is investigated. Characteristic features of the solar and coronal magnetic-field structure, morphological features of the white-light corona, and radio maps of the solar-wind transition (transonic) region are compared. The solar-wind stream structure is detected and studied by using radio maps of the transition region, the raggedness of its boundaries, and their deviation from spherical symmetry. The radio maps have been constructed from radioastronomical observations in 1995–1997. It is shown that the structural changes in the transition region largely follow the changes occurring in regions closer to the Sun, in the circumsolar magnetic-field structure, and in the solar-corona structure. The correlations between the magnetic-field strength in the solar corona and the location of the inner (nearest the Sun) boundary of the transition region are analyzed. The distinct anticorrelation between the coronal magnetic-field strength and the distance of the transition region from the Sun is a crucial argument for the penetration of solar magnetic fields into plasma streams far from the Sun.  相似文献   

18.
We study the correlation between near-Earth observations of interplanetary coronal mass ejections (ICMEs) detected by the Wind and ACE spacecrafts and their counterparts of coronal mass ejections (CMEs) observed near the Sun by the SOHO/LASCO coronagraph during 1996–2002. The results have been compared with an empirical model given by Gopalswamy, et al. (2000; 2001) to predict the 1-AU arrival time of CMEs. In this paper, we use an expected data set with a wider range with initial velocities than that considered in previous models. To improve the accuracy of the predicted arrival time, we divided the CME events into two groups according to their effective acceleration and deceleration. The results show that our model works well for events with a negative acceleration in the initial velocity range between 500 and 2500 km/s, while the model described by Gopalswamy is better for events with initial velocities near the solar wind velocity. Published in Russian in Astronomicheskii Vestnik, 2009, Vol. 43, No. 2, pp. 137–144. The text was translated by the authors.  相似文献   

19.
Hu  Y.Q. 《Solar physics》2001,200(1-2):115-126
Using a 2.5-D, time-dependent ideal MHD model in Cartesian coordinates, a numerical study is carried out to find equilibrium solutions associated with a magnetic flux rope in the corona. The ambient magnetic field is partially open, consisting of a closed arcade in the center and an open field at the flank. The coronal magnetic flux rope is characterized by its magnetic properties, including the axial and annular magnetic fluxes and the magnetic helicity, and its geometrical features, including the height of the rope axis, the halfwidth of the rope and the length of the vertical current sheet below the rope. It is shown that for a given partially open ambient magnetic field, the dependence of the geometrical features on the magnetic properties displays a catastrophic behavior, namely, there exists a certain critical point, across which an infinitesimal enhancement of the magnetic parameters causes a finite jump of the geometrical parameters for the rope. The amplitude of the jump depends on the extent to which the ambient magnetic field in open, and approaches to zero when the ambient magnetic field becomes completely closed. The implication of such a catastrophe in solar active phenomena is briefly discussed.  相似文献   

20.
Gary D. Parker 《Solar physics》1986,104(2):333-345
The rotation of the solar electron corona is determined for intervals when nearly periodic variations dominated the polarization brightness record during 1964–1976. Coronal rotation rates derived for 765 intervals vary with height, latitude, and interval length. These rotation rates show a decrease of differential rotation with height and support earlier rotation studies which included much less stationary data. Analyses of the selected intervals and autocorrelation of the complete K-coronameter data set give quantitative estimates of the rotational effects of magnetic tracer age and lifetime. The principal effects detected are a relatively fast rotation of very long-lived tracers at high latitude and a relatively fast rotation of very short-lived tracers at low latitudes. The observations indicate that high-to-low latitude magnetic connections extending through the corona speed up rotation at high latitudes and retard it at low latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号