首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper provides numerical examples for the prediction of height anomalies by the solution of Molodensky's boundary value problem. Computations are done within two areas in the Canadian Rockies. The data used are on a grid with various grid spacings from 100 m to 5 arc-minutes. Numerical results indicate that the Bouguer or the topographicisostatic gravity anomalies should be used in gravity interpolation. It is feasible to predict height anomalies in mountainous areas with an accuracy of 10 cm (1) if sufficiently dense data grids are used. After removing the systematic bias, the differences between the geoid undulations converted from height anomalies and those derived from GPS/levelling on 50 benchmarks is 12 cm (1) when the grid spacing is 1km, and 50 cm (1) when the grid spacing is 5. It is not necessary, in most cases, to require a grid spacing finer than 1 km, because the height anomaly changes only by 3 cm (1) when the grid spacing is increased from 100 m to 1000 m. Numerical results also indicate that, only the first two terms of the Molodensky series have to be evaluated in all but the extreme cases, since the contributions of the higher order terms are negligible compared to the objective accuracy.  相似文献   

2.
A new, high-resolution and high-precision geoid has been computed for the whole of Canada and part of the U.S., ranging from 35°N to about 90°N in latitude and 210°E to 320°E in longitude. The OSU91A geopotential model complete to degree and order 360 was combined with a 5 × 5 mean gravity anomaly grid and 1km × 1km topographical information to generate the geoid file. The remove-restore technique was adopted for the computation of terrain effects by Helmert's condensation reduction. The contribution of the local gravity data to the geoid was computed strictly by the 1D-FFT technique, which allows for the evaluation of the discrete spherical Stokes integral without any approximation, parallel by parallel. The indirect effects of up to second order were considered. The internal precision of the geoid, i.e. the contribution of the gravity data and the model coefficients noise, was also evaluated through error propagation by FFT. In a relative sense, these errors seem to agree quite well with the external errors and show clearly the weak areas of the geoid which are mostly due to insufficient gravity data coverage. Comparison of the gravimetric geoid with the GPS/levelling-derived geoidal heights of eight local GPS networks with a total of about 900 stations shows that the absolute agreement with respect to the GPS/levelling datum is generally better than 10 cm RMS and the relative agreement ranges, in most cases, from 4 to 1 ppm over short distances of about 20 to 100km, 1 to 0.5 ppm over distances of about 100 to 200 km, and 0.5 to 0.1 ppm for baselines of 200 to over 1000 km. Other existing geoids, such as UNB90, GEOID90 and GSD91, were also included in the comparison, showing that the new geoid achieves the best agreement with the GPS/levelling data.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

3.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

4.
Geoid determination in Turkey (TG-91)   总被引:1,自引:0,他引:1  
It is considered that precise geoid determination is one of the main current geodetic problems in Turkey since GPS defined coordinates require geoidal heights in practice. In order to determine the geoid by least squares collocation (LSC) the area covering Turkey was divided into 114 blocks of size 1° × 1°. LSC approximation to the geoid based upon the tailored geopotential model GPM2-T1 is constructed within each block. The model GPM2-T1 complete to degree and order 200 has been developed by tailoring of the model GPM2 to mean free-air anomalies and mean heights of one degree blocks in Turkey. Terrain effect reduced point gravity data spaced 5 × 5 within each block which the sides extended 0°.5 were used in LSC. Residual terrain model (RTM) depends on point heights at 15×20 griding and 5×5 and 15×15 mean heights has been carried out in terrain effect reduction. Indirect effect of RTM on geoid is also taken into account. The geoid, called Turkish Geoid 1991 (TG-91), referenced to GRS-80 ellipsoid has been computed at 3 × 3 griding nodes within each block. The quality of the TG-91 is also evaluated by comparing computed and GPS derived geoidal height differences, and 2.1 – 2.6 ppm accuracy for average baseline lenght of 45 km is obtained.  相似文献   

5.
In a modern application of Stokes formula for geoid determination, regional terrestrial gravity is combined with long-wavelength gravity information supplied by an Earth gravity model. Usually, several corrections must be added to gravity to be consistent with Stokes formula. In contrast, here all such corrections are applied directly to the approximate geoid height determined from the surface gravity anomalies. In this way, a more efficient workload is obtained. As an example, in applications of the direct and first and second indirect topographic effects significant long-wavelength contributions must be considered, all of which are time consuming to compute. By adding all three effects to produce a combined geoid effect, these long-wavelength features largely cancel. The computational scheme, including two least squares modifications of Stokes formula, is outlined, and the specific advantages of this technique, compared to traditional gravity reduction prior to Stokes integration, are summarised in the conclusions and final remarks. AcknowledgementsThis paper was written whilst the author was a visiting scientist at Curtin University of Technology, Perth, Australia. The hospitality and fruitful discussions with Professor W. Featherstone and his colleagues are gratefully acknowledged.  相似文献   

6.
Recent papers in the geodetic literature promote the reduction of gravity for geoid determination according to the Helmert condensation technique where the entire reduction is made in place before downward continuation. The alternative approach, primarily developed by Moritz, uses two evaluation points, one at the Earths surface, the other on the (co-)geoid, for the direct topographic effect. Both approaches are theoretically legitimate and the derivations in each case make use of the planar approximation and a Lipschitz condition on height. Each method is re-formulated from first principles, yielding equations for the direct effect that contain only the spherical approximation. It is shown that neither method relies on a linear relationship between gravity anomalies and height (as claimed by some). Numerical tests, however, show that the practical implementations of these two approaches yield significant differences. Computational tests were performed in three areas of the USA, using 1×1 grids of gravity data and 30×30 grids of height data to compute the gravimetric geoid undulation, and GPS/leveled heights to compute the geometric geoid undulation. Using the latter as a control, analyses of the gravimetric undulations indicate that while in areas with smooth terrain no substantial differences occur between the gravity reduction methods, the Moritz–Pellinen (MP) approach is clearly superior to the Vanicek–Martinec (VM) approach in areas of rugged terrain. In theory, downward continuation is a significant aspect of either approach. Numerically, however, based on the test data, neither approach benefited by including this effect in the areas having smooth terrain. On the other hand, in the rugged, mountainous area, the gravimetric geoid based on the VM approach was improved slightly, but with the MP approach it suffered significantly. The latter is attributed to an inability to model the downward continuation of the Bouguer anomaly accurately in rugged terrain. Applying the higher-order, more accurate gravity reduction formulas, instead of their corresponding planar and linear approximations, yielded no improvement in the accuracy of the gravimetric geoid undulation based on the available data.  相似文献   

7.
R. Kiamehr 《Journal of Geodesy》2006,79(10-11):602-612
The computation of regional gravimetric geoid models with reasonable accuracy, in developing countries, with sparse data is a difficult task that needs great care. Here we investigate the procedure for gathering, evaluating and combining different data for the determination of a gravimetric geoid model for Iran, where limited ground gravity data are available. Heterogeneous data, including gravity anomalies, the high-resolution Shuttle Radar Topography Mission global digital terrain model and different global geopotential models including recently published Gravity Recovery and Climate Experiment models, are combined through least-squares modification of the Stokes formula. The new gravimetric geoid model, IRG04, agrees considerably better with GPS/levelling than any of the other recent local geoid model in the area. Its RMS fit with GPS/levelling is 0.27 m and 3.8 ppm in the absolute and relative view, respectively. The relative accuracy of IRG04 is four times better than the most recently published global and regional geoid models available in this area. This progress shows the practical potential of the method of least-squares modification of Stokes’s formula in combination with heterogeneous data for regional geoid determination  相似文献   

8.
When regional gravity data are used to compute a gravimetric geoid in conjunction with a geopotential model, it is sometimes implied that the terrestrial gravity data correct any erroneous wavelengths present in the geopotential model. This assertion is investigated. The propagation of errors from the low-frequency terrestrial gravity field into the geoid is derived for the spherical Stokes integral, the spheroidal Stokes integral and the Molodensky-modified spheroidal Stokes integral. It is shown that error-free terrestrial gravity data, if used in a spherical cap of limited extent, cannot completely correct the geopotential model. Using a standard norm, it is shown that the spheroidal and Molodensky-modified integration kernels offer a preferable approach. This is because they can filter out a large amount of the low-frequency errors expected to exist in terrestrial gravity anomalies and thus rely more on the low-frequency geopotential model, which currently offers the best source of this information. Received: 11 August 1997 / Accepted: 18 August 1998  相似文献   

9.
A new isostatic model of the lithosphere and gravity field   总被引:2,自引:0,他引:2  
Based on the analysis of various factors controlling isostatic gravity anomalies and geoid undulations, it is concluded that it is essential to model the lithospheric density structure as accurately as possible. Otherwise, if computed in the classical way (i.e. based on the surface topography and the simple Airy compensation scheme), isostatic anomalies mostly reflect differences of the real lithosphere structure from the simplified compensation model, and not necessarily the deviations from isostatic equilibrium. Starting with global gravity, topography and crustal density models, isostatic gravity anomalies and geoid undulations have been determined. The initial crust and upper-mantle density structure has been corrected in a least squares adjustment using gravity. To model the long-wavelength (>2000 km) features in the gravity field, the isostatic condition (i.e. equal mass for all columns above the compensation level) is applied in the adjustment to uncover the signals from the deep-Earth interior, including dynamic deformations of the Earths surface. The isostatic gravity anomalies and geoid undulations, rather than the observed fields, then represent the signals from mantle convection and deep density inhomogeneities including remnants of subducted slabs. The long-wavelength non-isostatic (i.e. the dynamic) topography was estimated to range from –0.4 to 0.5 km. For shorter wavelengths (<2000 km), the isostatic condition is not applied in the adjustment in order to obtain the non-isostatic topography due to regional deviations from classical Airy isostasy. The maximum deviations from Airy isostasy (–1.5 to 1 km) occur at currently active plate boundaries. As another result, a new global model of the lithosphere density distribution is generated. The most pronounced negative density anomalies in the upper mantle are found near large plume provinces, such as Iceland and East Africa, and in the vicinity of the mid-ocean ridge axes. Positive density anomalies in the upper mantle under the continents are not correlated with the cold and thick lithosphere of cratons, indicating a compensation mechanism due to thermal and compositional density.  相似文献   

10.
为计算深圳精密重力大地水准面,利用62个高精度GPS水准点和4871个实测重力点数据对EGM96,WDM94和GPM98CR全球重力场模型表示深圳局部重力场进行了比较与评价。结果表明,由上述3个重力场模型计算的大地水准面高和重力异常与实测值之间存在明显的系统偏差,当采用GPS水准数据尽可能消除系统偏差以后,大地水准面高的精度得到显著提高,若应用移去-恢复技术确定深圳高精度大地水准面,则WDM94应该是首选的参考重力场模型。  相似文献   

11.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

12.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

13.
用重力异常逐级余差计算重力大地水准面   总被引:1,自引:0,他引:1  
石磐  盛宗琪 《测绘学报》1993,22(4):279-286
本文将计算重力大地水准面的频域方法推广至空域,提出了一种新的用重力数据和重力模型位系数联合确定大地水准面的方法。利用重力异常的逐级余差实施积分,使得通常的Stokes积分方法具有明确的频域分析含义,可按精度要求确定出使用重力异常余差的块形大小及积分半径ψo。  相似文献   

14.
Satellite gravity missions, such as CHAMP, GRACE and GOCE, and airborne gravity campaigns in areas without ground gravity will enhance the present knowledge of the Earths gravity field. Combining the new gravity information with the existing marine and ground gravity anomalies is a major task for which the mathematical tools have to be developed. In one way or another they will be based on the spectral information available for gravity data and noise. The integration of the additional gravity information from satellite and airborne campaigns with existing data has not been studied in sufficient detail and a number of open questions remain. A strategy for the combination of satellite, airborne and ground measurements is presented. It is based on ideas independently introduced by Sjöberg and Wenzel in the early 1980s and has been modified by using a quasi-deterministic approach for the determination of the weighting functions. In addition, the original approach of Sjöberg and Wenzel is extended to more than two measurement types, combining the Meissl scheme with the least-squares spectral combination. Satellite (or geopotential) harmonics, ground gravity anomalies and airborne gravity disturbances are used as measurement types, but other combinations are possible. Different error characteristics and measurement-type combinations and their impact on the final solution are studied. Using simulated data, the results show a geoid accuracy in the centimeter range for a local test area.  相似文献   

15.
The fast Fourier transform (FFT) and, recently, the fast Hartley transform (FHT) have been extensively used by geodesists for efficient geoid determination. For this kind of efficiency, data must be given on a regular grid and, consequently, a pre-processing step of interpolation is required when only point measurements are available. This paper presents a way of computing a grid of geoid undulations N without explicitly gridding the data. The method is applicable to all FFT or FHT techniques of geoid or terrain effects determination, and it works with planar as well as spherical formulas. This method can be used not only for, e.g., computing a grid of undulations from irregular gravity anomalies g but it also lends itself to other applications, such as the gridding of gravity anomalies and, since the contribution of each data point is computed individually, the update of N- or g-grids as soon as new point measurements become available. In the case that there are grid cells which contain no measurements, the results of gravity interpolation or geoid estimation can be drastically improved by incorporating into the procedure a frequency-domain interpolating function. In addition to numerical results obtained using a few simple interpolating functions, the paper presents briefly the mathematical formulas for recovering missing grid values and for transforming values from one grid to another which might be rotated and/or scaled with respect to the first one. The geodetic problems where these techniques may find applications are pointed out throughout the paper.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

16.
The main objective of this study is to improve the geoid by GPS/leveling data in Egypt. Comparisons of the gravimetric geoid with GPS/leveling data have been performed. On the basis of a gravimetric geoid fitted to GPS/leveling by the least square method, a smoothed geoid was obtained. A high-resolution geoid in Egypt was computed with a 2.5′×2.5′ grid by combining the data set of 2600 original point gravity values, 20″×30″ resolution Digital Terrain Model (DTM) grid and the spherical harmonic model EGM96. The method of computation involved the strict evaluation of the Stokes integral with 1D-FFT. The standard deviation of the difference between the gravimetric and the GPS/leveling geoid heights is ±0.47 m. The standard deviation after fitting of the gravimetric geoid to the GPS/leveling points is better than ±13 cm. In the future we will try to improve our geoid results in Egypt by increasing the density of gravimetric coverage.  相似文献   

17.
Geoid determination using one-step integration   总被引:1,自引:1,他引:0  
P. Novák 《Journal of Geodesy》2003,77(3-4):193-206
A residual (high-frequency) gravimetric geoid is usually computed from geographically limited ground, sea and/or airborne gravimetric data. The mathematical model for its determination from ground gravity is based on the transformation of observed discrete values of gravity into gravity potential related to either the international ellipsoid or the geoid. The two reference surfaces are used depending on height information that accompanies ground gravity data: traditionally orthometric heights determined by geodetic levelling were used while GPS positioning nowadays allows for estimation of geodetic (ellipsoidal) heights. This transformation is usually performed in two steps: (1) observed values of gravity are downward continued to the ellipsoid or the geoid, and (2) gravity at the ellipsoid or the geoid is transformed into the corresponding potential. Each of these two steps represents the solution of one geodetic boundary-value problem of potential theory, namely the first and second or third problem. Thus two different geodetic boundary-value problems must be formulated and solved, which requires numerical evaluation of two surface integrals. In this contribution, a mathematical model in the form of a single Fredholm integral equation of the first kind is presented and numerically investigated. This model combines the solution of the first and second/third boundary-value problems and transforms ground gravity disturbances or anomalies into the harmonically downward continued disturbing potential at the ellipsoid or the geoid directly. Numerical tests show that the new approach offers an efficient and stable solution for the determination of the residual geoid from ground gravity data.  相似文献   

18.
为了得到我国某陆海交界区厘米级精度的区域(似)大地水准面,利用43个高精度GPS/水准点和1 045个实测重力点数据对EGM96,WDM94和GFZ计算的局部重力(似)大地水准面进行了比较与评价。结果表明,在该测区用移去-恢复法确定重力(似)大地水准面时,EGM96应该是首选参考重力场模型。该测区处在陆海交界处,海域无GPS/水准数据。经比较发现,采用距离倒数加权平均法将该区重力似大地水准面拟合于GPS/水准数据比在大范围使用的多项式法效果更好。采用该方法计算的测区(似)大地水准面精度优于3cm。  相似文献   

19.
1 IntroductionDifferentgeoidsolutionswerecarriedoutforE gyptusingheterogeneousdataanddifferentmethodologies (El_Tokhey ,1 993) .ThemaingoalofthispaperistodetermineamostaccuratenewgeoidforEgypttakingadvantageofanewupdatedgravitydatabase,theinformationgivenby…  相似文献   

20.
Canadian gravimetric geoid model 2010   总被引:4,自引:1,他引:3  
A new gravimetric geoid model, Canadian Gravimetric Geoid 2010 (CGG2010), has been developed to upgrade the previous geoid model CGG2005. CGG2010 represents the separation between the reference ellipsoid of GRS80 and the Earth’s equipotential surface of $W_0=62{,}636{,}855.69~\mathrm{m}^2\mathrm{s}^{-2}$ W 0 = 62 , 636 , 855.69 m 2 s ? 2 . The Stokes–Helmert method has been re-formulated for the determination of CGG2010 by a new Stokes kernel modification. It reduces the effect of the systematic error in the Canadian terrestrial gravity data on the geoid to the level below 2 cm from about 20 cm using other existing modification techniques, and renders a smooth spectral combination of the satellite and terrestrial gravity data. The long wavelength components of CGG2010 include the GOCE contribution contained in a combined GRACE and GOCE geopotential model: GOCO01S, which ranges from $-20.1$ ? 20.1 to 16.7 cm with an RMS of 2.9 cm. Improvement has been also achieved through the refinement of geoid modelling procedure and the use of new data. (1) The downward continuation effect has been accounted accurately ranging from $-22.1$ ? 22.1 to 16.5 cm with an RMS of 0.9 cm. (2) The geoid residual from the Stokes integral is reduced to 4 cm in RMS by the use of an ultra-high degree spherical harmonic representation of global elevation model for deriving the reference Helmert field in conjunction with a derived global geopotential model. (3) The Canadian gravimetric geoid model is published for the first time with associated error estimates. In addition, CGG2010 includes the new marine gravity data, ArcGP gravity grids, and the new Canadian Digital Elevation Data (CDED) 1:50K. CGG2010 is compared to GPS-levelling data in Canada. The standard deviations are estimated to vary from 2 to 10 cm with the largest error in the mountainous areas of western Canada. We demonstrate its improvement over the previous models CGG2005 and EGM2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号