首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Epigenetic, vein-type graphite mineralization originates by deposition from C—O—H fluids in high-temperature environments. Consequently, fluid-deposited graphite is uniformly highly crystalline in volumetrically large occurrences. This work examines the factors controlling graphite crystallinity in fluid-deposited occurrences with reference to some case studies from southern Spain where vein-type graphite is associated with a variety of host rocks. Possible causes influencing high crystallinity of graphite in these occurrences include: (1) large graphite occurrences are generated from large volumes of fluids that maintain their temperatures for long periods of time, which is easier at higher temperatures; (2) high temperature conditions are required for a fluid to precipitate a major part of its dissolved carbon during a small temperature decrease; (3) carbon is incorporated into C—O—H fluids mainly through devolatilization reactions which also require high temperatures; (4) highly crystalline graphite generated at high-T/high-P conditions is less susceptible to resorption as P decreases or by subsequent fluid flow; (5) graphite precipitation involves high activation energy that can be overcome only if the temperature is high enough. These causes can be extrapolated to most vein-type graphite deposits worldwide. Received: 23 February 1998 / Accepted: 28 April 1998  相似文献   

2.
http://www.sciencedirect.com/science/article/pii/S1674987111001083   总被引:2,自引:1,他引:2  
Stable carbon isotope geochemistry provides important information for the recognition of fundamental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elaboration of models for the global carbon cycle.Carbon isotope ratios in fluid-deposited graphite are powerful tools for unravelling the ultimate origin of carbon(organic matter,mantle,or carbonates) and help to constrain the fluid history and the mechanisms involved in graphite deposition.Graphite precipitation in fluid-deposited occurrences results from CO2- and/or CH4-bearing aqueous fluids.Fluid flow can be considered as both a closed(without replenishment of the fluid) or an open system(with renewal of the fluid by successive fluid batches).In closed systems,carbon isotope systematics in graphite is mainly governed by Rayleigh precipitation and/or by changes in temperature affecting the fractionation factor between fluid and graphite.Such processes result in zoned graphite crystals or in successive graphite generations showing,in both cases, isotopic variation towards progressive l3C or 12C enrichment(depending upon the dominant carbon phase in the fluid.CO2 or CH4,respectively).In open systems,in which carbon is episodically introduced along the fracture systems,the carbon systematics is more complex and individual graphite crystals may display oscillatory zoning because of Rayleigh precipitation or heterogeneous variations of 5’ C values when mixing of fluids or changes in the composition of the fluids are the mechanisms responsible for graphite precipitation.  相似文献   

3.
Carbon-saturated crustal fluids in the C–O–H system comprise H2O, CO2 and CH4 as the most important fluid species. Graphite precipitation from a cooling C–O–H is discussed for two different systems, namely for a fluid–rock system in which no transfer of atomic oxygen and hydrogen between the fluid and the rock is possible (closed fluid system), and for an open fluid system. Thermodynamic model calculations show that the graphite-forming reactions and the graphite precipitation potential are different for these two systems. Furthermore, the calculations demonstrate that for both systems, the following factors play a role in determining the graphite precipitation potential, i.e. (1) the redox state of the fluid, (2) the initial pressure and temperature conditions and (3) whether cooling is combined with decompression. Open and closed fluid system graphite precipitation can be distinguished from each other using fluid inclusion and stable carbon isotope studies. The results of this study provide insight in the formation of hydrothermal graphite deposits.  相似文献   

4.
Graphite deposits result from the metamorphism of sedimentary rocks rich in carbonaceous matter or from precipitation from carbon-bearing fluids (or melts). The latter process forms vein deposits which are structurally controlled and usually occur in granulites or igneous rocks. The origin of carbon, the mechanisms of transport, and the factors controlling graphite deposition are discussed in relation to their geological settings. Carbon in granulite-hosted graphite veins derives from sublithospheric sources or from decarbonation reactions of carbonate-bearing lithologies, and it is transported mainly in CO2-rich fluids from which it can precipitate. Graphite precipitation can occur by cooling, water removal by retrograde hydration reactions, or reduction when the CO2-rich fluid passes through relatively low-fO2 rocks. In igneous settings, carbon is derived from assimilation of crustal materials rich in organic matter, which causes immiscibility and the formation of carbon-rich fluids or melts. Carbon in these igneous-hosted deposits is transported as CO2 and/or CH4 and eventually precipitates as graphite by cooling and/or by hydration reactions affecting the host rock. Independently of the geological setting, vein graphite is characterized by its high purity and crystallinity, which are required for applications in advanced technologies. In addition, recent discovery of highly crystalline graphite precipitation from carbon-bearing fluids at moderate temperatures in vein deposits might provide an alternative method for the manufacture of synthetic graphite suitable for these new applications.  相似文献   

5.
The volcanic-hosted graphite deposit at Borrowdale in Cumbria, UK, was formed through precipitation from C-O-H fluids. The δ13C data indicate that carbon was incorporated into the mineralizing fluids by assimilation of carbonaceous metapelites of the Skiddaw Group by andesite magmas of the Borrowdale Volcanic Group. The graphite mineralization occurred as the fluids migrated upwards through normal conjugate fractures forming the main subvertical pipe-like bodies. The mineralizing fluids evolved from CO2-CH4-H2O mixtures (XCO2 = 0.6-0.8) to CH4-H2O mixtures. Coevally with graphite deposition, the andesite and dioritic wall rocks adjacent to the veins were intensely hydrothermally altered to a propylitic assemblage. The initial graphite precipitation was probably triggered by the earliest hydration reactions in the volcanic host rocks. During the main mineralization stage, graphite precipitated along the pipe-like bodies due to CO2 → C + O2. This agrees with the isotopic data which indicate that the first graphite morphologies crystallizing from the fluid (cryptocrystalline aggregates) are isotopically lighter than those crystallizing later (flakes). Late chlorite-graphite veins were formed from CH4-enriched fluids following the reaction CH4 + O2 → C + 2H2O, producing the successive precipitation of isotopically lighter graphite morphologies. Thus, as mineralization proceeded, water-generating reactions were involved in graphite precipitation, further favouring the propylitic alteration. The structural features of the pipe-like mineralized bodies as well as the isotopic homogeneity of graphite suggest that the mineralization occurred in a very short period of time.  相似文献   

6.
流体的热力学前缘研究   总被引:12,自引:1,他引:12  
张哲儒 《地学前缘》1996,3(3):80-88
总结了当前国内外关于流体的热力学前缘研究领域如下:(1)流体体系的p-V-T-x相关系研究,主要对象是H2O-CO2-盐类多组分体系高温高压下相图的实验和理论研究。(2)矿物在流体中的溶解度及溶解后在流体中溶解类型的形式和热力学性质——平衡常数(或Gibbs自由能)及各种偏摩尔性质的研究。(3)流体热力学模型化研究,已研制出大量的计算机软件,包括多种矿物、溶解类型的热力学数据库和模拟热液平衡、矿物溶解性质、反应路径和水—岩相互作用的实用程序。(4)超临界流体的相关系和化学反应等有许多特殊的性质,对认识地球内部的演化将有重要意义。(5)新技术新方法的发展,使分析单个矿物包裹体成分变成了现实。  相似文献   

7.
C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites   总被引:4,自引:0,他引:4  
Abstract C-O-H fluid produced by the equilibration of H2O and excess graphite must maintain the atomic H/O ratio of water, 2:1. This constraint implies that all thermodynamic properties of the fluid are uniquely determined at isobaric-isothermal conditions. The O2, H2O and CO2 fugacities (fo2, fH2O and fCO2) of such fluids have been estimated from equations of state and fit as a function of pressure and temperature. These fugacities can be taken as characteristic for graphitic metamorphic systems in which the dominant fluid source is dehydration, e.g. pelitic lithologies. Because there are no compositional degrees of freedom for graphite-saturated fluids produced entirely by dehydration, the variance of the dehydration process is not increased in comparison with that in non-graphitic systems. Thus, compositional ‘buffering’of C-O-H fluids by dehydration equilibria, a common petrological model, requires that redox reactions, decarbonation reactions or external, H/O ± 2, fluid sources perturb the evolution of the metamorphic system. Such perturbations are not likely to be significant in metapelitic environments, but their tendency will be to increase the fO2 of the fluid phase. At high metamorphic grades, pyrite desulphidation reactions may cause a substantial reduction of fH2O and slight increases in fO2 and fCO2 relative to sulphur-free fluid. At low metamorphic grade, sulphur solubility in H/O ± 2 fluids is so low that pyrite decomposition must occur by sulphur-conserving reactions that cause iron depletion in silicates, a common feature of sulphidic pelites. With increasing temperature and sulphur solubility, pyrite desulphidation may be driven by dehydration reactions or infiltration of H2O-rich fluids. The absence of magnetite and the assemblages carbonate + aluminosilicate or pyrite + pyrrhotite + ilmenite from most graphitic metapelites is consistent with an H/O = 2 model for GCOH(S) fluid. For graphitic rocks in which such a model is inapplicable, a phase diagram variable that defines the H/O ratio of GCOH(S) fluid is more useful than the conventional fO2 variable.  相似文献   

8.
地球深部流体演化与矿石成因   总被引:26,自引:2,他引:26  
张荣华  胡书敏 《地学前缘》2001,8(4):297-310
文中重点讨论含矿NaClH2 O溶液在从高温、高压向低温、低压条件改变时性质变化对矿石形成过程的影响。通过对含矿NaClH2 O溶液的实验观测获得对地球深部流体性质的新认识。地球深部的NaClH2 O流体大多处于超临界态流体 ,在上升过程中经减压降温后 ,通过临界态 ,进入低于临界态的热液状态。流体在这一跨越临界态的转变过程中造成了大多数矿石的沉淀。自然界里的许多矿石是在开放流动体系和在非平衡的化学动力学过程中形成的。开放流动体系矿物与水的反应动力学实验 ,证明一些矿石可能形成于流动热液。跨越临界态这一转变过程中的矿物水反应动力学实验结果表明了反应速率的大涨落。地球深部流体在上升过程中的性质演化、流动体系和非均相反应动力学是现代矿石成因研究的 3个关键问题  相似文献   

9.
The vein graphite deposits of Sri Lanka are located in a Precambrian high grade metamorphic terrain dominated by granulite facies rocks. The vein graphite has been interpreted as being of solid phase lateral secretion origin, derived by hydrothermal solutions or of biogenic origin. Based on what is known on the composition of the fluids under granulite facies conditions and the role of these fluids in their transport through the crust, the origin of the graphite is proposed to be the direct consequence of granulite facies metamorphism in the presence of a CO2 rich fluid under low fO2 conditions. This CO2 rich fluid could promote hydraulic fracturing and precipitation of vein graphite. Textures and structures of the vein graphite indicate syntectonic deposition by a crack-seal process under granulite facies metamorphic conditions. This model is supported by temperature estimates on graphite based on XRD data and stable carbon isotopes of graphite that suggest a deep-seated crustal origin.  相似文献   

10.
热水溶液地球化学   总被引:8,自引:0,他引:8  
曾贻善 《地学前缘》1996,3(3):89-95
概述了热水溶液地球化学的主要研究内容和近年来在实验和理论研究方面的进展,包括高温高压下水的热力学性质、状态方程式、介电常数、电导率和电离平衡;NaCl-CO2-H2O体系及其边界体系(NaCl-H2O和CO2-H2O)的相关系、热力学性质和状态方程式,特别是利用人工流体包裹体技术和分子动力学模拟取得的新成果;高温高压电解质稀水溶液的电导测定;以HKF模型为基础,热水溶液中不同物种的标准偏摩尔热力学性质和高温高压有关物理化学参数的估算;热水溶液中的物种形成(热液流体中的矿物溶解度测定、电势测量和谱学研究);水和热水溶液结构的红外和拉曼谱学研究;水和热水溶液的传输性质(粘度和导热系数)。  相似文献   

11.
The occurrence and distribution of carbon in the StillwaterComplex have been investigated. In mineralized troctolite andassociated rocks of olivine-bearing zone I (OB I), carbon ispresent as graphitic material and calcite. The assemblage forsterite-antigorite-calcite-graphiteand the petro graphic relations indicate equilibration of thecarbon-rich phases during serpentinization. Typical OB I troctolitecontains 500–1100 ppm wt. carbon, 40–70% of whichis in calcite, whereas troctolite from higher stratigraphicpositions generally contains <400 ppm carbon. Due to themetamorphism, it is not possible to deduce the extent to whichenrichment of carbon in the ore zone is inherited from magmaticprocesses. In contrast, there is good evidence for magmaticgraphite in parts of the Bushveld Complex. The C-O-H-Cl system has been investigated for conditions ofStillwater and Bushveld crystalliz ation. In alkali-poor fluidsover a wide range of igneous and metamorphic conditions, theimportant chlorine species are HCl and CH3Cl The addition ofchlorine to a C-O-H fluid in equilibrium with graphite leadsto a quantitative increase in HCl+CH3Cl and corresponding decreasein H2O contents, and, when Cl/H exceeds 1, to a CO2+CO-richfluid with little H2O Similarly, in more reduced fluids, CH4contents are depressed by the formation of CH3Cl. From consideration of volatile solubilities and abundances inmafic magmas and the nature of the C-O-H-Cl system, it is hypothesizedthat the first fluid to exsolve from Bushveld and Stillwaterintercumulus melt was composed of a mixture of CO2 CO, and HClwith minor amounts of sulfur species and H2O A model is developedfor the evolution of such a fluid with cooling. The model assumesthat graphite began to precipitate from the fluid at supersolidustemperature and that the system cooled down a T-fo2 path parallelto and >2 log units below that of the Ni-NiO oxygen buffer.Upon the appearance of graphite, the fluid evolved to a morehydrogen-rich composition by graphite precipitation and lossof oxygen to the surrounding silicate-oxide assemblage. Coolingof fluid to 25?C below the first appearance of graphite resultedin reduction in the fluid mass by >70%, thus concentratingchlorine, sulfur and other residual species in the intercumulusfluid and melt. The model explains the presence of chlor-apatiteand the enrichment of graphite in the Bushveld Critical Zoneand predicts that chlor-apatite-bearing Stillwater rocks weresimilarly enriched in graphite during crystallization.  相似文献   

12.
The P-V-T-X properties of H2O-salt systems are compared depending on the solubility coefficient of compounds contained in these systems and the presence or absence of critical phenomena in the saturated solutions. Data on synthetic and natural inclusions captured in minerals at elevated temperatures and pressures and employed to discuss the principal features of phase diagrams of the H2O-NaCl system (type I) and H2O-NaF system (type II or P-Q type). It is demonstrated how characteristics of magmatic fluids of various types are manifested during the development of miarolitic pegmatites (Malkhan field in Transbaikalia) and during the crystallization of F-rich ongonitic melts (Ary-Bulak Massif in eastern Transbaikalia). Characteristics of solutions and gas-rich (gaseous) fluid inclusions in quartz phenocrysts from porphyritic ongonites (disappearance of the liquid regardless of its density and the overall salinity near the critical point of water, distinctive features of the dissolution of the crystalline phase, and the ability of the inclusions to withstand heating to 1400°C without decrepitation), and the richness of the fluid-magmatic system as a whole in F suggest that the ongonite melt crystallized in the presence of low-density NaF-bearing fluids of the P-Q type with a minor admixture of chlorides. It is important to identify the type of solutions in the fluid inclusions, because without knowing this type, it is impossible to accurately enough calculate the pressure at the temperatures of inclusion capture. For example, the unwarranted classification of solutions of type II (P-Q) in inclusions with the chloride system results in a significant overestimation of the calculated fluid pressures. A technique is proposed for studying the high-temperature immiscibility region in P-Q systems based on data obtained on gaseous fluid inclusions.  相似文献   

13.
Field and experimental investigations demonstrate the chemistry of mid-ocean ridge hydrothermal vent fluids reflects fluid-mineral reaction at higher temperatures than those typically measured at the seafloor. To account for this and, in turn, be able to better constrain sub-seafloor hydrothermal processes, we have developed an empirical geothermometer based on the dissolved Fe/Mn ratio in high-temperature fluids. Using data from basalt alteration experiments, the relationship; T (°C) = 331.24 + 112.41*log[Fe/Mn] has been calibrated between 350 and 450 °C. The apparent Fe-Mn equilibrium demonstrated by the experimental data is in good agreement with natural vent fluids, suggesting broad applicability. When used in conjunction with constraints imposed by quartz solubility, associated sub-seafloor pressures can be estimated for basalt-hosted systems. As an example, this methodology is used to interpret new data from 13°N on the East Pacific Rise, where high-temperature fluids both enriched and depleted in chloride (339-646 mmol/kg), relative to seawater, are actively venting within a close proximity. Accounting for these variable salinities, active phase separation is clearly taking place at 13°N, yet the fluid Fe/Mn ratios and the silica concentrations suggest equilibration at temperatures less than those coinciding with the two-phase region. These data show the chloride-enriched fluid reflects the highest temperature and pressure (∼432 °C, 400 bars) of equilibration, consistent with circulation near the top of the inferred magma chamber. This is in agreement with the elevated CO2 concentration relative to the chloride-depleted fluids. The noted temperature derived from the Fe/Mn geothermometer is higher than the critical temperature for a fluid of equivalent salinity. This carries the important implication that, despite being chloride-enriched relative to seawater, these fluids evolved as the vapor component of even higher salinity brine.  相似文献   

14.
Graphite-bearing peridotites, pyroxenites and eclogite xenoliths from the Kaapvaal craton of southern Africa and the Siberian craton, Russia, have been studied with the aim of: 1) better characterising the abundance and distribution of elemental carbon in the shallow continental lithospheric mantle; (2) determining the isotopic composition of the graphite; (3) testing for significant metastability of graphite in mantle rocks using mineral thermobarometry. Graphite crystals in peridotie, pyroxenite and eclogite xenoliths have X-ray diffraction patterns and Raman spectra characteristic of highly crystalline graphite of high-temperature origin and are interpreted to have crystallised within the mantle. Thermobarometry on the graphite-peridotite assemblages using a variety of element partitions and formulations yield estimated equilibration conditions that plot at lower temperatures and pressures than diamondiferous assemblages. Moreover, estimated pressures and temperatures for the graphite-peridotites fall almost exclusively within the experimentally determined graphite stability field and thus we find no evidence for substantial graphite metastability. The carbon isotopic composition of graphite in peridotites from this and other studies varies from δ13 CPDB = ? 12.3 to ? ?3.8%o with a mean of-6.7‰, σ=2.1 (n=22) and a mode between-7 and-6‰. This mean is within one standard deviation of the-4‰ mean displayed by diamonds from peridotite xenoliths, and is identical to that of diamonds containing peridotite-suite inclusions. The carbon isotope range of graphite and diamonds in peridotites is more restricted than that observed for either phase in eclogites or pyroxenites. The isotopic range displayed by peridotite-suite graphite and diamond encompasses the carbon isotope range observed in mid-ocean-ridge-basalt (MORB) glasses and ocean-island basalts (OIB). Similarity between the isotopic compositions of carbon associated with cratonic peridotites and the carbon (as CO2) in oceanic magmas (MORB/OIB) indicates that the source of the fluids that deposited carbon, as graphite or diamond, in catonic peridotites lies within the convecting mantle, below the lithosphere. Textural observations provide evidence that some of graphite in cratonic peridotites is of sub-solidus metasomatic origin, probably deposited from a cooling C-H-O fluid phase permeating the lithosphere along fractures. Macrocrystalline graphite of primary appearance has not been found in mantle xenoliths from kimberlitic or basaltic rocks erupted away from cratonic areas. Hence, graphite in mantle-derived xenoliths appears to be restricted to Archaean cratons and occurs exclusively in low-temperature, coarse peridotites thought to be characteristic of the lithospheric mantle. The tectonic association of graphite within the mantle is very similar to that of diamond. It is unlikely that this restricted occurrence is due solely to unique conditions of oxygen fugacity in the cratonic lithospheric mantle because some peridotite xenoliths from off-craton localities are as reduced as those from within cratons. Radiogenic isotope systematics of peridotite-suite diamond inclusions suggest that diamond crystallisation was not directly related to the melting events that formed lithospheric peridotites. However, some diamond (and graphite?) crystallisation in southern Africa occurred within the time span associated with the stabilisation of the lithospheric mantle (Pearson et al. 1993). The nature of the process causing localisation of carbon in cratonic mantle roots is not yet clearly understood.  相似文献   

15.
利用自行研制的高温高压反应釜,在不同温度、压力和矿化度条件下测试CO2在地层水中的溶解度。实验结果表明:温度一定的条件下,CO2在水中的溶解度随压力的增加而增加;压力一定的条件下,CO2在水中溶解度的主要变化趋势为随温度的增加而降低,当温度大于100℃、压力在22 MPa左右时,CO2在地层水中的溶解度将发生异常,出现低压(小于22 MPa)时随温度的增加而降低,高压(大于22 MPa)时随温度的增加而略微升高;在温度压力都一定的条件下,CO2在水中的溶解度随矿化度的增加而降低。并且,在新测得的实验数据和已有的实验数据的基础上,通过修正PR-HV状态方程中的参数,建立了一个能够精确计算CO2在水中溶解度的模型;并将该模型与其他模型对比。对比结果表明,该模型计算精度最高,平均相对误差仅为2.69%。  相似文献   

16.
The thermodynamic properties of 154 mineral end-members, 13 silicate liquid end-members and 22 aqueous fluid species are presented in a revised and updated data set. The use of a temperature-dependent thermal expansion and bulk modulus, and the use of high-pressure equations of state for solids and fluids, allows calculation of mineral–fluid equilibria to 100  kbar pressure or higher. A pressure-dependent Landau model for order–disorder permits extension of disordering transitions to high pressures, and, in particular, allows the alpha–beta quartz transition to be handled more satisfactorily. Several melt end-members have been included to enable calculation of simple phase equilibria and as a first stage in developing melt mixing models in NCKFMASH. The simple aqueous species density model has been extended to enable speciation calculations and mineral solubility determination involving minerals and aqueous species at high temperatures and pressures. The data set has also been improved by incorporation of many new phase equilibrium constraints, calorimetric studies and new measurements of molar volume, thermal expansion and compressibility. This has led to a significant improvement in the level of agreement with the available experimental phase equilibria, and to greater flexibility in calculation of complex mineral equilibria. It is also shown that there is very good agreement between the data set and the most recent available calorimetric data.  相似文献   

17.
《International Geology Review》2012,54(15):1864-1875
ABSTRACT

In the mines of the Nacional de Grafite Company around Itapecerica (Minas Gerais), located in the southern Sao Francisco Craton, occurs a supracrustal succession of high-grade metamorphic rocks including quartzite, garnet-biotite gneiss, and graphite schist formed in the Palaeoproterozoic (2.0 Ga). During metamorphic processes, organic matter was progressively transformed into graphite. From four graphite samples of three different mines (two samples from high-grade metamorphic graphite schist and two generated by hydrothermal recrystallization of the graphite schist), the origin and formation temperature of this mineral was obtained by C isotopes, X-ray diffraction (XRD), and Raman spectroscopy. The values of δ13C range between ?21.23 and ?27.89 ‰, indicating that the source of the graphite was a primitive biogenic carbon material. High-grade metamorphic graphites show average temperatures around 729°C, while hydrothermal recrystallizated graphites (vein-graphites) show temperatures around 611°C by XRD, which correspond to granulite- to amphibolite facies conditions. The hydrothermal process with percolation of C-O-H fluids leads to a decrease in the crystal size along stacking direction (Lc(002)) when compared with the previously formed high-grade metamorphism graphites. An update of the current tectonic model about the collisional process during Rhyacian-Orosirian orogeny in the Sao Francisco Craton is proposed to insert the formation of the Itapecerica graphite-rich metasedimentary sequence.  相似文献   

18.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   

19.
The Eldorado low-sulfide gold-quartz deposit, with gold reserves of more than 60 tons, is located in the damage zone of the Ishimba Fault in the Yenisei Ridge and is hosted by Riphean epidote-amphibolite metamorphic rocks (Sukhoi Pit Group). Orebodies occur in four roughly parallel heavily fractured zones where rocks were subject to metamorphism under stress and heat impacts. They consist of sulfide-bearing schists with veins of gray or milky-white quartz varieties. Gray quartz predominating in gold-bearing orebodies contains graphite and amorphous carbon identified by Raman spectroscopy; the contents of gold and amorphous carbon are in positive correlation. As inferred from thermobarometry, gas chromatography, gas chromatography-mass spectrometry, and Raman spectroscopy of fluid inclusions in sulfides, carbonates, and gray and white quartz, gold mineralization formed under the effect of reduced H2O-CO2-HC fluids with temperatures of 180 to 490 °C, salinity of 9 to 22 wt.% NaCl equiv, and pressures of 0.1 to 2.3 kbar. Judging by the presence of 11% mantle helium (3He) in fluid inclusions from quartz and the sulfur isotope composition (7.1-17.4‰ δ34S) of sulfides, ore-bearing fluids ascended from a mantle source along shear zones, where they “boiled”. While the fluids were ascending, the metalliferous S- and N-bearing hydrocarbon (HC) compounds they carried broke down to produce crystalline sulfides, gold, and disseminated graphite and amorphous carbon (the latter imparts the gray color to quartz). Barren veins of milky-white quartz formed from oxidized mainly aqueous fluids with a salinity of < 15 wt.% NaCl equiv at 150-350 °C. Chloride brines (> 30 wt.% NaCl equiv) at 150-260 °C impregnated the gold-bearing quartz veins and produced the lower strata of the hydrothermal-granitoid section. The gold mineralization (795-710 Ma) was roughly coeval to local high-temperature stress metamorphism (836-745 Ma) and intrusion of the Kalama multiphase complex (880-752 Ma).  相似文献   

20.
We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10−2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic alteration commencing with alkali-feldspar breakdown and leading to potassic, phyllic and argillic assemblages; this is associated with reduction and iron metasomatism as observed in nature and (3) interaction with a multicomponent fluid at 600 °C produces sodic-calcic metasomatism. Na, Ca and Fe are the most mobile elements whereas immobility of Al is limited by f/r ∼ 400. All simulations predict a volume decrease by 3.4-5.4%, i.e., porosity formation at f/r < 30. At higher fluid/rock ratios simulation (2) produces a substantial volume increase (59%) due to mineral precipitation, whereas simulation (3) predicts a volume decrease by 49% at the advanced albitization-desilication stage. Volume changes closely correlate with mass changes of SiO2 and are related to silica solubility in fluids. The combined effects of oxygen fugacity, fluid acidity and pH for breakdown of aqueous metal complexes and precipitation of ore minerals were evaluated by means of reduced activity products. Sharp increases in saturation indexes for oxidative breakdown occur at each alteration zone whereas reductive breakdown or involvement of other chloride complexes favor precipitation at high fluid/rock ratios only. Calculations of multicomponent aqueous-solid equilibria at high temperatures and pressures are able to accurately predict rock mineralogy and fluid chemistry and are applicable to diverse reactive flow processes in the Earth’s crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号