首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The Neoproterozoic basins of central Australia share many features of architecture and sedimentary fill, suggesting common large-scale extrinsic causal mechanisms. In an attempt to improve understanding of these mechanisms we have gathered and analysed new deep seismic reflection data and re-evaluated existing seismic and well-log data from the eastern Officer Basin, the largest and most poorly known of Australia's intracratonic basins. The Officer Basin is asymmetric and has a steep thrust-controlled northern margin paralleled by sub-basins as much as 10 km in depth. Further south the basin shallows gradually onto a broad platform. The basin rests on a thick crust (≈42 km) that is pervaded by a complex of northward-dipping surfaces most of which terminate erosionally against the sediments of the Officer Basin and are interpreted as prebasinal features, possibly faults. Some appear to have been zones of crustal weakness which were reactivated as thrust complexes and played a major role in basin evolution. The sedimentary succession can be subdivided into six megasequences separated by major tectonically and erosionally enhanced sequence boundaries. The megasequences have distinctive sequence stacking patterns suggesting that they were deposited in response to episodic subsidence induced by a major extrinsic tectonic event. The basin initially formed as part of a giant sag basin which incorporated all the present-day intracratonic basins (Amadeus, Georgina, Ngalia, Officer and Savory Basins) in a single large ‘superbasin’ perhaps as a response to mantle processes. Subsidence then ceased for ≈100 Myr producing a regional erosion surface. Beginning in the Torrensian or Sturtian five more major events of varying regional significance influenced the basin's evolution. Four were compressional events, the first of which activated major thrust complexes along the present basin margins, forming deep foreland sub-basins with elevated intervening basement blocks. Once activated, the thrust complexes and sub-basins persisted throughout the life of the intracratonic basins. From this epoch the intracratonic basins of central Australia were decoupled from the giant sag basin and became interrelated but independent features. Available information suggests that the Officer, Amadeus, Georgina, Ngalia and Savory Basins are related and are perhaps products of major tectonic events associated with the assembly and ultimate dispersal of the Proterozoic supercontinent. The closing phases of these basins were strongly influenced by events occurring along the newly created active eastern margin of the Australian continent in the Palaeozoic.  相似文献   

6.
7.
Summary. Palaeomagnetic results from Part I of this study and their analysis in Part II are combined to eliminate bias from the Cenozoic apparent polar wander path for Australia – a bias due to non-dipole components in past geomagnetic fields or, for poles calculated from hot-spot data, due to the motion of hot spots relative to the Earth's rotational axis. This path is extended in approximately bias-free form to the late Mesozoic, and indicates a significant change in the drift direction of the continent between 26 and about 60 Ma.
The bias-corrected Australian path is used, first, with seafloor spreading data for the Southern Ocean to derive a corresponding late Mesozoic–Cenozoic pole path for Antarctica. The latter shows that the Antarctic drift direction reversed in the early Tertiary. It is suggested that the early Tertiary directional changes of both Australia and Antarctica are part of a global reorganization of plates during the Eocene, postulated by Rona & Richardson, Cande & Mutter and Patriat & Achache.
Next, the Australian path is compared with hot-spot data from the African and Australian plates, indicating a movement of the hot spots relative the Earth's rotational axis during the Cenozoic. The direction of this movement is found to be consistent with previous results from other parts of the world.
Finally, the Australian path is used together with non-dipole components in the geomagnetic field to explain a prominent westward displacement of the mid- and late Cenozoic poles of India relative to those of Australia.
Because of uncertainties in the original poles and in the analysis, the present results are likely to contain appreciable errors. Nevertheless, their consistency with independent findings supports the dipole-quadrupole model of Part II for mid- and late Cenozoic geomagnetic fields.  相似文献   

8.
9.
Holocene coastal evolution in New South Wales has been interpreted essentially as the unfolding of the impact of marine transgression. Sea level on this coast supposedly reached its present height at 6–6.5 ka, and varied < 1 m since then. The early Holocene rise of the sea has been considered the key factor (“forcing function”) in dune migration, coastal sand barrier development, and the evolution of estuaries. Episodic storminess during the late Holocene has been seen as an important, though secondary, factor in beach erosion and dune mobilisation. An alternate interpretation presented here challenges the concept of the marine transgression as the primary “forcing function”. It (a) attributes early Holocene dune mobilisation to climate rather than the rising sea; (b) shows that the sea reached its present level by 7 ka and rose to at least + 2 m until 1.5 ka; (c) links late Holocene dune activity to local disruption of vegetation rather than to regional episodic storminess; (d) demonstrates a fall of 2°C in sea surface temperature after 3 ka that coincides with the onset of barrier erosion; (e) recognises the imprint of at least three tsunamis in the coastal sedimentary record.  相似文献   

10.
11.
12.
13.
14.
15.
Late- to post-orogenic basins formed on both sides of the Pan-African – Brasiliano orogen when the Congo and Kalahari Cratons collided with the Rio de la Plata Craton during the formation of western Gondwana. Trace fossil evidence and radiometric age dating indicate that deposits on both sides are coeval and span the Cambrian–Precambrian boundary. A peripheral foreland basin, the Nama Basin, developed on the subducting southern African plate. Lower, craton-derived fluviomarine clastics are overlain by marine platform carbonates and deltaic flysch derived in part from the rising subduction complex along the northern (Damara Belt) and western (Gariep Belt) orogenic margins. Rare, thin volcanic ash layers (tuffs and cherts) are present. Upper sediments consist of unconformable red molasse related to collisional orogenesis. Orogenic loading from the north and west led to crustal flexure and the formation of a remnant ocean that drained to the south and closed progressively from north to south. During final collision SE-, E- and NE-verging nappes overrode the active basin margins. Although younger than most of the post-orogenic magmatism, its setting on the cratonic edge of the subducting plate precluded marked volcanism or granitic intrusion, the only exception being the youngest intrusions of the Kuboos-Bremen Suite dated at 521±6 Ma to 491±8 Ma. Two foreland-type basins, perhaps faulted remnants of a much larger NE–SW elongated retroarc foreland basin, are found west of the Dom Feliciano Belt on the edge of the Rio de la Plata Craton in southern Brazil. In the southern Camaqua Basin, basal fluvial deposits are followed by cyclical marine and coarsening-up deltaic deposits with a notable volcanic and volcaniclastic component. This lower deformed succession, comprising mainly red beds, contain stratabound Cu and Pb–Zn deposits and is overlain unconformably by a fluviodeltaic to aeolian succession of sandstones and conglomerates (with minor andesitic volcanics), derived primarily from an eastern orogenic source and showing southerly longitudinal transport. In the northern Itajaí Basin, sediments range from basal fluvial and platform sediments to fining-up submarine fan and turbidite deposits with intercalated acid tuffs. The Brazilian basins had faulted margins off which alluvial fans were shed. They also overlie parts of the Ribeira Belt. Thrust deformation along the orogenic margin bordering the Dom Feliciano Belt was directed westward in the Camaqua and Itajaí basins, but reactivated strike-slip and normal faults are also present. Late- to post-orogenic granitoids and volcanics of the Dom Feliciano Belt, ranging in age from 568±6 Ma to 529±4 Ma, occur in the foreland basins and are geochemically related to some of the synsedimentary volcanics.  相似文献   

16.
A new compilation of data from 436 drill cores using decompaction and backstripping techniques was used to reconstruct the basin filling history from the Pliocene until the present day in the Palma, Inca and Sa Pobla Basins on the island of Mallorca (Spain). Calcareous rocks dominate the source area and provide a limited amount of clastic input to the basins that has resulted in an average accumulation rate of between 5 and 20 m/Ma during the last 5.3 Ma. Carbonate sediment production dominated the basin filling history during early‐mid Pliocene, but during the Quaternary, the sedimentation processes in the Palma Basin were probably enhanced by an evolution in the drainage network that increased the sediment supply and the accumulated thickness caused by stream capture. However, the maximum sedimentation rate filling the depocentres of the three basins has been decreasing since the Pliocene, showing that not only the catchment transport efficiency but also the relative sea level have been controlling the sediment accumulation in these carbonate basins. The isopach cross‐sections support the idea that a palaeorelief was generated during the Messinian sea level drop and that heterogeneities were filled in from the Pliocene to the Quaternary. We conclude that the central basins of Mallorca were filled heterogeneously due to tectonic and geomorphic processes that controlled sediment transport and production, resulting in different average sedimentation thicknesses that decreased since the Pliocene as the accommodation space became filled and the relative sea level dropped.  相似文献   

17.
ABSTRACT The intracratonic basins of central Australia are distinguished by their large negative Bouguer gravity anomalies, despite the absence of any significant topography. Over the Neoproterozoic to Palaeozoic Officer Basin, the anomalies attain a peak negative amplitude in excess of 150 mGal, amongst the largest of continental anomalies observed on Earth. Using well data from the Officer and Amadeus basins and a data grid of sedimentary thicknesses from the eastern Officer Basin, we have assessed the evolution of these intracratonic basins. One-dimensional backstripping analysis reveals that Officer and Amadeus basin tectonic subsidence was not entirely synchronous. This implies that the basins evolved as discrete geological features once the Centralian Superbasin was dismembered into its constituent basins. Two- and three-dimensional backstripping and gravity modelling suggest that the eastern Officer Basin evolved from a broad continental sag into a region of intracratonic flexural subsidence from the latest Neoproterozoic, when flexure of the lithosphere deepened the northern basin. The results from gravity modelling improve when the crust is thickened beneath the northern margin of the basin and thinned at the southern margin, as has been suggested by recent deep seismic data. The crustal thickening beneath the basin's northern margin abuts the region of greatest topographic relief and is consistent with the observed structure at the edges of many orogenic belts. If the Officer Basin evolved as a foreland-type basin from the late Proterozoic and has retained those features to the present, then one implication is that in the absence of any significant topography, cratonic lithosphere must be able to support stresses over very long periods of geological time.  相似文献   

18.
This research is part of an integrated study investigating the Cainozoic development of the Proteaceae in south‐western Australia and this study documents the pollen and geochemical record from Two Mile Lake, south‐western Australia, to determine the environment of this area during the late Quaternary. The vegetation record from Two Mile Lake is consistently dominated by Casuarina and Chenopodiaceae species, with a variety of other pollen types. Geochemical analysis indicates that the environment was low in magnetic minerals, organics, carbonates, nitrogen and phosphorus. Geochemical and palynological results indicate that the vegetation and environment of south‐western Australia were unresponsive and/or unaffected by climatic changes of the early Holocene. The sedimentation rates are unclear and represent an important constraint to this study. It is possible that there was either rapid sedimentation in this area during the early Holocene and/or a lack of environmental change as a result of complex environmental processes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号