首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A coastal risk assessment system simulates the basic physical mechanisms underlying contaminant transport in Tampa Bay. This risk assessment system, comprised of a three-dimensional numerical circulation model coupled to a Lagrangian particle tracking model, simulates the transport and dispersion of a toxic dinoflagellate bloom. Instantaneous velocity output from the circulation model drives the movement of particles, each representing a fraction of a K. brevis bloom, within the model grid cells. Hindcast simulations of the spatial distribution of the K. brevis bloom are presented and compared with water sample concentrations collected during the peak of the bloom. Probability calculations, herein called transport quotients, allow for rapid analysis of bay-wide K. brevis transport showing locations most likely to be impacted by the contaminant. Maps constructed from the transport quotients provide managers with a bay-wide snapshot of areas in Tampa Bay most at risk during a hazardous bloom event.  相似文献   

2.
The baroclinic response of a stratified coastal embayment (Lunenburg Bay of Nova Scotia) to the observed wind forcing is examined using two numerical models. A linear baroclinic model based on the normal mode approach shows skill at reproducing the observed isotherm movements and sub-surface currents during a time of strong stratification in the bay. The linear model also shows that the isotherm movement in Lunenburg Bay is influenced by the wind forcing and propagation of baroclinic Kelvin waves from neighbouring Mahone Bay. The effects of nonlinearity and topography are investigated using a three-dimensional nonlinear coastal circulation model. The nonlinear model results demonstrate that the nonlinear advection terms generate a gyre circulation at the entrance of Lunenburg Bay, and the slope bottom topography at the mouth of the bay strengthens the sub-surface time-mean inflow on the southern side of the bay. A comparison of model-calculated currents in different numerical experiments clearly shows that baroclinicity plays a dominant role in the dynamics of wind-driven circulation in Lunenburg Bay.  相似文献   

3.
We describe a numerical forecast system designed for prediction of physical and biological dynamics of a coastal inlet. It is based on a coastal ocean observatory that was located at Lunenburg Bay, Nova Scotia, Canada. Biological, chemical, optical, and physical measurements were collected from instrumented moorings, weekly sampling and detailed surveys from 2002 through 2007. Here we present a framework for calibration and evaluation of an ecosystem model using data from the summer of 2007. A three-dimensional hydrodynamic model was coupled to a simple biological (Nutrients-Phytoplankton-Detritus) model; a simple model was used so results could be compared directly to observed biological and chemical variables using skill scores as a first step toward data-assimilation modeling. As a complement to this analysis, variability of model output, e.g., the nutrient limitation term, was examined to understand the modeled biological response to the simulated physical environment. Skill scores based on variances in observed and simulated time-series of biological components were also investigated. Coastal upwelling/downwelling simulated through this model has been found to increase modeled biological activity in the bay. Also model skill in reproducing the observed patterns in nutrients and phytoplankton has been increased due to the restoring conditions for biology set up at the open ocean boundaries of the bay.  相似文献   

4.
《Continental Shelf Research》1999,19(9):1221-1245
This paper presents some recent results of drifters released on the West Florida Shelf during 1996–1997 and compares with the numerical model results of the wind-driven circulation. Using satellite tracked surface drifters during the one year period from February 1996 to February 1997, a drifter free region, called the “forbidden zone”, is found over the southern portion of the West Florida Shelf. This finding is consistent with historical drift bottle data and with a recent numerical model study of the West Florida Shelf circulation response to climatological wind forcing. Direct drifter simulations by numerical model during March 1996 show a good agreement with both the in situ ADCP current observation and drifter observation. Three mechanisms are proposed for the observed Lagrangian features. The primarily dynamic mechanism is the along-shore wind forcing, which induces a coastal jet that tends to leave the coast and the bottom onshore and near surface offshore transports. The second one is the convergent coastal geometry and bottom topography for the southward flow in central shelf near Tampa Bay that enforces the coastal jet and the bottom and near surface transport. The last is a kinematic one, simply due to the short along-shore Lagrangian excursion, driven by the typical synoptic weather systems. Thus near surface shelf waters over the north may not reach the southern coast of the West Florida. Implication is that surface hazard such as oil spill that may occur outside of the southern West Florida shelf may not greatly impact the southern coastal region except Florida Keys. However, the biological and chemical patches over the north that may occur in the water column such as red tides still can easily reach the southern coastal region through the subsurface and bottom waters.  相似文献   

5.
Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring–neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5–10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring–neap cycle may have important implications for biogeochemical cycles within the bay.  相似文献   

6.
A 4-year simulation of the surface circulation driven by the local wind on a section of the central Chilean coast is presented. The model is shown to reproduce the major observed features of the circulation. Comparison to observations of sea-surface temperature (SST) taken within the study area suggests that the model captures well coastal upwelling processes in the region. The circulation is shown to have two distinct modes corresponding to spring/summer and autumn/winter. During spring/summer sustained strong south-westerly wind forcing drives an equatorward coastal jet consistent with the Chile Coastal Current (CCC) and coastal upwelling at previously identified locations of intense upwelling at Topocalma Point and Curaumilla Point. Weaker winds during autumn/winter produce a slower CCC and a more homogenous SST field. Upwelling/relaxation and topographic eddies provide the main sources of variability on sub-seasonal time-scales in the model. The mechanisms responsible for each of these are discussed. Upwelling at Topocalma and Curaumilla Points is shown to be produced through generation of an upwelling Ekman bottom boundary layer following acceleration of the CCC close to the coast, reinforced by secondary circulation due to flow curvature around the headlands. Additional upwelling occurs north of Curaumilla Point due to development of shallow wind-driven overturning flow. Wind-sheltering is shown to be an important factor for explaining the fact that Valparaíso Bay is typically an upwelling shadow. Flow separation and eddy formation within Valparaíso Bay is seen to occur on the order of 10 times per year during relaxation after strong wind events and may persist for a number of weeks. Shorter lived topographic eddies are also seen to occur commonly at Topocalma and Toro Points. These eddies are shown to form in response to the surface elevation minima produced at each of these locations during upwelling.  相似文献   

7.
Data are presented on long-term salinity behaviour in San Francisco Bay, California. A two-level, width averaged model of the tidally averaged salinity and circulation has been written in order to interpret the long-term (days to decades) salinity variability. The model has been used to simulate daily averaged salinity in the upper and lower levels of a 51 segment discretization of the Bay over the 22-yr period 1967–1988. Monthly averaged surface salinity from observations and monthly-averaged simulated salinity are in reasonable agreement. Good agreement is obtained from comparison with daily averaged salinity measured in the upper reaches of North Bay.The salinity variability is driven primarily by freshwater inflow with relatively minor oceanic influence. All stations exhibit a marked seasonal cycle in accordance with the Mediterranean climate, as well as a rich spectrum of variability due to extreme inflow events and extended periods of drought. Monthly averaged salinity intrusion positions have a pronounced seasonal variability and show an approximately linear response to the logarithm of monthly averaged Delta inflow. Although few observed data are available for studies of long-term salinity stratification, modelled stratification is found to be strongly dependent on freshwater inflow; the nature of that dependence varies throughout the Bay. Near the Golden Gate, stratification tends to increase up to very high inflows. In the central reaches of North Bay, modelled stratification maximizes as a function of inflow and further inflow reduces stratification. Near the head of North Bay, lowest summer inflows are associated with the greatest modelled stratification. Observations from the central reaches of North Bay show marked spring-neap variations in stratification and gravitational circulation, both being stronger at neap tides. This spring-neap variation is simulated by the model. A feature of the modelled stratification is a hysteresis in which, for a given spring-neap tidal range and fairly steady inflows, the stratification is higher progressing from neaps to springs than from springs to neaps.The simulated responses of the Bay to perturbations in coastal sea salinity and Delta inflow have been used to further delineate the time-scales of salinity variability. Simulations have been performed about low inflow, steady-state conditions for both salinity and Delta inflow perturbations. For salinity perturbations a small, sinusoidal salinity signal with a period of 1 yr has been applied at the coastal boundary as well as a pulse of salinity with a duration of one day. For Delta inflow perturbations a small, sinusoidally varying inflow signal with a period of 1 yr has been superimposed on an otherwise constant Delta inflow, as well as a pulse of inflow with a duration of one day. Perturbations in coastal salinity dissipate as they move through the Bay. Seasonal perturbations require about 40–45 days to propagate from the coastal ocean to the Delta and to the head of South Bay. The response times of the model to perturbations in freshwater inflow are faster than this in North Bay and comparable in South Bay. In North Bay, time-scales are consistent with advection due to lower level, up-estuary transport of coastal salinity perturbations; for inflow perturbations, faster response times arise from both upper level, down-estuary advection and much faster, down-estuary migration of isohalines in response to inflow volume continuity. In South Bay, the dominant time-scales are governed by tidal dispersion.  相似文献   

8.
The honeycomb worm Sabellaria alveolata forms biogenic reefs which constitute diversity hotspots on tidal flats. The largest known reefs in Europe, located in the Bay of Mont-Saint-Michel (English Channel), are suffering increasing anthropogenic disturbances which raise the question of their sustainability. As the ability to recover depends partly on the recolonization of damaged reefs by larval supply, evaluating larval dispersal and the connectivity between distant reefs is a major challenge for their conservation. In the present study, we used a 3D biophysical model to simulate larval dispersal under realistic hydroclimatic conditions and estimate larval retention and exchanges among the two reefs of different sizes within the bay. The model takes into account fine-scale hydrodynamic circulation (800×800 m2), advection–diffusion larval transport, and gregarious settlement behaviour. According to the field data, larval dispersal was simulated for a minimal planktonic larval duration ranging from 4 to 8 weeks and the larval mortality was set to 0.09 d−1. The results highlighted the role played by a coastal eddy on larval retention within the bay, as suggested by previous in situ observations. Very different dispersal patterns were revealed depending on the spawning reef location, although the two reefs were located only 15 km apart. The settlement success of the larvae released from the smallest reef was mainly related to tidal conditions at spawning, with the highest settlement success for releases at neap tide. The settlement success of the larvae from the biggest reef was more dependent on meteorological conditions: favourable W and SW winds may promote a ten-fold increase in settlement success. Strong year-to-year variability was observed in settlers’ numbers, with favourable environmental windows not always coinciding with the main reproductive periods of Sabellaria. Settlement kinetics indicated that the ability to delay metamorphosis could significantly improve the settlement success. Although bidirectional exchanges occurred between the two reefs, the highest settlers’ numbers originated from the biggest reef because of its stronger reproductive output. Because of the recent decline of this reef due to increasing anthropogenic disturbances larval supply in the bay may not be sufficient enough to ensure the sustainability of the remarkable habitat formed by Sabellaria alveolata reefs.  相似文献   

9.
A limited domain, coastal ocean forecast system consisting of an unstructured grid model, a meteorological model, a regional ocean model, and a global tidal database is designed to be globally relocatable. For such a system to be viable, the predictability of coastal currents must be well understood with error sources clearly identified. To this end, the coastal forecast system is applied at the mouth of Chesapeake Bay in response to a Navy exercise. Two-day forecasts are produced for a 10-day period from 4 to 14 June 2010 and compared to real-time observations. Interplay between the temporal frequency of the regional model boundary forcing and the application of external tides to the coastal model impacts the tidal characteristics of the coastal current, even contributing a small phase error. Frequencies of at least 3 h are needed to resolve the tidal signal within the regional model; otherwise, externally applied tides from a database are needed to capture the tidal variability. Spatial resolution of the regional model (3 vs 1 km) does not impact skill of the current prediction. Tidal response of the system indicates excellent representation of the dominant M 2 tide for water level and currents. Diurnal tides, especially K 1, are amplified unrealistically with the application of coarse 27-km winds. Higher-resolution winds reduce current forecast error with the exception of wind originating from the SSW, SSE, and E. These winds run shore parallel and are subject to strong interaction with the shoreline that is poorly represented even by the 3-km wind fields. The vertical distribution of currents is also well predicted by the coastal model. Spatial and temporal resolution of the wind forcing including areas close to the shoreline is the most critical component for accurate current forecasts. Additionally, it is demonstrated that wind resolution plays a large role in establishing realistic thermal and density structures in upwelling prone regions.  相似文献   

10.
Accurate short-term prediction of surface currents can improve the efficiency of search-and-rescue operations, oil-spill response, and marine operations. We developed a linear statistical model for predicting surface currents (up to 48?h in the future) based on a short time history of past HF-radar observations (past 48?h) and an optional forecast of surface winds. Our model used empirical orthogonal functions (EOFs) to capture spatial correlations in the HF-radar data and used a linear autoregression model to predict the temporal dynamics of the EOF coefficients. We tested the developed statistical model using historical observations of surface currents in Monterey Bay, California. The predicted particle trajectories separated from particles advected with HF-radar data at a rate of 4.4?km/day. The developed model was more accurate than an existing statistical model (drifter separation of 5.5?km/day) and a circulation model (drifter separation of 8.9?km/day). When the wind forecast was not available, the accuracy of our model degraded slightly (drifter separation of 4.9?km/day), but was still better than existing models. We found that the minimal length of the HF-radar data required to train an accurate statistical model was between 1 and 2?years, depending on the accuracy desired. Our evaluation showed that the developed model is accurate, is easier to implement and maintain than existing statistical and circulation models, and can be relocated to other coastal systems of similar complexity that have a sufficient history of HF-radar observations.  相似文献   

11.
We present a family of p-enrichment schemes. These schemes may be separated into two basic classes: the first, called fixed tolerance schemes, rely on setting global scalar tolerances on the local regularity of the solution, and the second, called dioristic schemes, rely on time-evolving bounds on the local variation in the solution. Each class of p-enrichment scheme is further divided into two basic types. The first type (the Type I schemes) enrich along lines of maximal variation, striving to enhance stable solutions in “areas of highest interest.” The second type (the Type II schemes) enrich along lines of maximal regularity in order to maximize the stability of the enrichment process. Each of these schemes are tested on three model systems. The first is an academic exact system where basic analysis is easily performed. Then we discuss a pair of application model problems arising in coastal hydrology. The first being a contaminant transport model, which addresses a declinature problem for a contaminant plume with respect to a bay inlet setting. And the second, a multicomponent chemically reactive flow model of estuary eutrophication arising in the Gulf of Mexico.  相似文献   

12.
Gorgan Bay is a semi-enclosed basin located in the southeast of the Caspian Sea, Iran. The bay is recognized as a resting place for migratory birds as well as a spawning habitat for native fish. However, apparently, no detailed research on its physical processes has previously been conducted. In this study, a 3D coupled hydrodynamic and solute transport model was used to investigate general circulation, thermohaline structure, and residence time in Gorgan Bay. Model outputs were validated against a set of field observations. Bottom friction and attenuation coefficient of light intensity were tuned in order to achieve optimum agreement with the observations. Results revealed that, due to the interaction between bathymetry and prevailing winds, a barotropic double-gyre circulation, dominating the general circulation, existed during all seasons in Gorgan Bay. Furthermore, temperature and salinity fluctuations in the bay were seasonal, due to the seasonal variability of atmospheric fluxes. Results also indicated that under the prevailing winds, the domain-averaged residence time in Gorgan Bay would be approximately 95 days. The rivers discharging into Gorgan Bay are considered as the main sources of nutrients in the bay. Since their mouths are located in the area with a residence time of over 100 days, Gorgan Bay could be at risk of eutrophication; it is necessary to adopt preventive measures against water quality degradation.  相似文献   

13.
The Tampa Bay Ecosystem is located in the state of Florida, USA. The 6739 km2 ecosystem has undergone major changes due to coastal development, including dredging for maintenance and expansion of the 10th largest port in the USA. Approximately 44% of the historic emergent coastal wetlands and 81% of the historic submergent seagrass meadows had been lost through 1981. Declines in commercial and recreational fisheries harvests and coastal wildlife populations followed similar trends in declines. Beginning three decades ago, an informal Integrated Coastal Management (ICM) program initiated by citizen groups has progressed to a formal ICM program that has initiated restoration of the ecosystem and management through a unique multi-county umbrella organization, the Tampa Bay Estuary Program.  相似文献   

14.
A history of water pollution and countermeasures for water purification in Dokai Bay, Japan are reviewed. Now, Dokai Bay suffers from the occurrences of red tides and oxygen-deficiency in summer. In order to prevent the occurrences of red tides and oxygen-deficiency, an ecological numerical model has been developed. The model experiments forecast that when the phosphorus or nitrogen load from land will be cut by 90% or 95%, respectively, red tides and oxygen-deficiency will not occur in Dokai Bay. If the industrial and sewage facilities are not sufficient to cut the nutrients load to the necessary degree, we have to consider other countermeasures such as cultivating bivalves and algae in order to decrease the nutrients concentration in the bay. International co-operation related to coastal zone management is also discussed.  相似文献   

15.
The response of the density-driven circulation in the Chesapeake Bay to wind forcing was studied with numerical experiments. A model of the bay with realistic bathymetry was first applied to produce the density-driven flow under average river discharge and tidal forcing. Subsequently, four spatially uniform wind fields (northeasterly, northwesterly, southwesterly, and southeasterly) were imposed to examine the resulting cross-estuary structure of salinity and flow fields. In general, northeasterly and northwesterly winds intensified the density-driven circulation in the upper and middle reaches of the bay, whereas southeasterly and southwesterly winds weakened it. The response was different in the lower bay, where downwind flow from the upper and middle reaches of the bay competed with onshore/offshore coastal flows. Wind remote effects were dominant, over local effects, on volume transports through the bay entrance. However, local effects were more influential in establishing the sea-level slopes that drove subtidal flows and salinity fields in most of the bay. The effect of vertical stratification on wind-induced flows was also investigated by switching it off. The absence of stratification allowed development of Ekman layers that reached depths of the same order as the water depth. Consequently, bathymetric effects became influential on the homogeneous flow structure causing the wind-induced flow inside the bay to show a marked transverse structure: downwind over the shallow areas and upwind in the channels. In the presence of stratification, Ekman layers became shallower and the wind-induced currents showed weaker transverse structure than those that developed in the absence of stratification. In essence, the wind-driven flows were horizontally sheared under weak stratification and vertically sheared under stratified conditions.  相似文献   

16.
Low-permeability layer (LPL), formed by natural deposit or artificial reclamation and commonly found below the intertidal zone of coastal groundwater system, can retard the ingress of seawater and contaminants, and shorten the travel time of the land-sourced contaminant to the marine environment compared with a homogenous sandy coastal aquifer. However, there is limited understanding on how an intertidal LPL, a condition occurred in a coastal aquifer at Moreton Bay, Australia, influences the groundwater and contaminant transport across the shallow beach aquifer system. We characterized the aquifer hydrological parameters, monitored the in situ groundwater heads, and constructed a 2-D numerical model to analyses the cross-shore hydrological processes in this stratified system. The calibrated model suggests that in the lower aquifer, the inland-source fresh groundwater flowed horizontally towards the sea, upwelled along the freshwater–saltwater interface, and exited the aquifer at the shore below the LPL. Whereas in the upper aquifer, the tidally driven seawater circulation formed a barrier that prevented fresh groundwater from horizontal transport and discharge to the beach above the LPL, thereby directing its leakage to the lower aquifer. A contaminant represented by a conservative tracer was ‘released’ the upper aquifer in the model and results showed that the spreading extent of the contaminant plume, the maximum rate of contaminant discharge to the ocean, and its plume length decreased compared with a simulation case in a homogenous sandy aquifer. Sensitivity analysis was also conducted to investigate the characteristics of the LPL, including its continuity and hydraulic conductivity, which were found to vary along the beach at Moreton Bay. The result shows that with a lower hydraulic conductivity and continuous layer of LPL reduced the groundwater exchange and contaminant transport between upper and lower aquifer. The findings from the combined field and modelling investigations on the impact of an intertidal LPL on coastal aquifer systems highlight its significant implications to alter the groundwater and mass transport across the land–ocean interface.  相似文献   

17.
A 2D depth-averaged numerical model is set up to simulate the macro-scale hydrodynamic characteristics, sediment transport patterns and morphological evolution in Hangzhou Bay, a large macro-tidal estuary on the eastern coast of China. By incorporating the shallow water equations, the suspended sediment transport equation and the mass-balance equation for sediment; short-term hydrodynamics, sediment transport and long-term morphological evolution for Hangzhou Bay are simulated and the underlying physical mechanisms are analyzed. The model reproduces the spatial distribution patterns of suspended sediment concentration (SSC) in Hangzhou Bay, characterized by three high SSC zones and two low SSC zones. It also correctly simulates the residual flow, the residual sediment transport and the sediment accumulation patterns in Hangzhou Bay. The model results are in agreement with previous studies based on field measurements. The residual flow and the residual sediment transport are landwards directed in the northern part of the bay and seawards directed in the southern part. Sediment accumulation takes place in most areas of the bay. Harmonic analysis revealed that the tide is flood-dominant in the northern part of the bay and ebb-dominant in the southern part of the bay. The strength of the flood-dominance increases landwards along the northern Hangzhou Bay. In turn sediment transport in Hangzhou Bay is controlled by this tidal asymmetry pattern. In addition, the direction of tidal propagation in the East China Sea, the presence of the archipelago in the southeast and the funnel-shaped geometry of the bay, play important roles for the patterns of sediment transport and sediment accumulation respectively.  相似文献   

18.
The response of the Chesapeake Bay to river discharge under the influence and absence of tide is simulated with a numerical model. Four numerical experiments are examined: (1) response to river discharge only; (2) response to river discharge plus an ambient coastal current along the shelf outside the bay; (3) response to river discharge and tidal forcing; and (4) response to river discharge, tidal forcing, and ambient coastal current. The general salinity distribution in the four cases is similar to observations inside the bay. Observed features, such as low salinity in the western side of the bay, are consistent in model results. Also, a typical estuarine circulation with seaward current in the upper layer and landward current in the lower layer is obtained in the four cases. The two cases without tide produce stronger subtidal currents than the cases with tide owing to greater frictional effects in the cases with tide. Differences in salinity distributions among the four cases appear mostly outside the bay in terms of the outflow plume structure. The two cases without tide produce an upstream (as in a Kelvin wave sense) or northward branch of the outflow plume, while the cases with tide produce an expected downstream or southward plume. Increased friction in the cases with tide changes the vertical structure of outflow at the entrance to the bay and induces large horizontal variations in the exchange flow. Consequently, the outflow from the bay is more influenced by the bottom than in the cases without tide. Therefore, a tendency for a bottom-advected plume appears in the cases with tide, rather than a surface-advected plume, which develops in the cases without tide. Further analysis shows that the tidal current favors a salt balance between the horizontal and vertical advection of salinity around the plume and hinders the upstream expansion of the plume outside the bay.  相似文献   

19.
To select appropriate bioindicators for the evaluation of the influence of nutrients from human activities in a Thalassia hemprichii meadow, environmental variables and plant performance parameters were measured in Xincun Bay, Hainan Island, South China. Nutrient concentrations in the bay decreased along a gradient from west to southeast. Moreover, the nutrients decreased with an increase in the distance from the shore on the southern side of the bay. Among the candidate indicators, the P content of the tissues closely mirrored the two nutrient loading gradients. The epiphytic algae biomass and the N content in the tissues mirrored one of the two nutrient loading trends. The leaf length, however, exhibited a significant negative correlation with the nutrient gradients. We propose that changes in the P content of T. hemprichii, followed by epiphytic algae biomass and N content of the tissues, may be the useful indicators of nutrient loading to coastal ecosystems.  相似文献   

20.
Sediment of Ostrich Bay, an arm of Dyes Inlet on Puget Sound, was historically contaminated with ordnance compounds from an onshore US Navy facility. An initial recommendation for a sediment cover to mitigate benthic risks was followed by studies of sediment transport and deposition to determine whether contaminated sediment from Dyes Inlet or other offsite sources in Puget Sound may contribute to Ostrich Bay impacts. A Sediment Trend Analysis (STA) identified net sediment transport pathways throughout the bay and inlet by examining changes in grain size distributions in multiple adjacent samples. Results indicated that fine-grained sedimentary material transports into and deposits throughout the Dyes Inlet system, with no erosion or transport out of Ostrich Bay. Echinoderm larvae mortality bioassay results were elevated in fine-grained sediments of both Ostrich Bay and Dyes Inlet. Ordnance compounds were undetected, and although sediment mercury concentrations were elevated at 0.48-1.4 mg/kg in both waterbodies, the relationship with toxicity was weak. Results of the studies and sedimentation modeling indicate that impacted sedimentary material deposits throughout the Dyes Inlet/Ostrich Bay system from unknown sources and will prevent natural recovery of Ostrich Bay as well as negate long-term effectiveness of active remedial measures. Stakeholders have recognized that remediation of the bay can be achieved only after the toxicity of depositing sediment decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号