共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
高分辨率遥感影像信息提取方法综述 总被引:5,自引:4,他引:5
感知地物信息最直接的载体就是遥感影像,从遥感影像中提取地形地物等专题信息是当前遥感技术面临的一个迫在眉睫的问题。遥感影像的空间分辨率伴随着遥感技术的飞速发展从公里级发展到厘米级,同时遥感影像所包含的信息正越来越丰富化。高空间分辨率遥感影像具有数据量极大、数据复杂以及尺度依赖的特点,使得高空间分辨率的遥感影像的数据处理以及影像信息提取具有一定的难度,面临一些急需解决的问题。文中介绍了高分辨率遥感影像信息提取的国内外研究现状和趋势,分析了几种遥感影像的分类方法,指出了面向对象的遥感影像信息提取的技术及高分辨率遥感影像的多尺度分割,并指出了国内外在遥感影像信息提取技术方面的不足和迫切需要解决的问题。 相似文献
6.
面向对象和规则的高分辨率影像分类研究 总被引:1,自引:0,他引:1
随着航天遥感技术的发展,遥感数据的空间分辨率、光谱分辨率和时间分辨率极大提高,高效解译并处理海量的、具有空间几何信息和纹理信息的地物高分辨率遥感影像数据已成为遥感领域研究的重点与难点。对此,本文提出一种面向对象和规则的遥感影像数据的分类提取方法,即通过发现和挖掘高分辨率影像丰富的光谱和空间特征知识,建立影像对象多层次网络分割分类结构,实现对遥感影像准确快速的地物分类和精度评价。以藏南地区WorldView-2影像数据为试验研究对象,采用面向对象和规则的影像分类方法进行验证试验,即综合采用均值方差法、最大面积法、精度比较法进行分析,选择3种最佳分割尺度建立多层次影像对象网络层次结构进行影像分类试验。结果表明,采用面向对象规则分类方法对高分辨率影像进行分类,能使高分辨率影像分类结果近似于目视判读的结果,分类精度更高。面向对象规则分类法的综合精度和Kappa系数分别为97.38%、0.967 3;与面向对象SVM法相比,分别高出6.23%、0.078;与面向对象KNN法相比,分别高出7.96%、0.099 6。建筑物的提取精度、用户精度分别比面向对象SVM法高出18.39%、3.98%,比面向对象KNN法高出21.27%、14.97%。 相似文献
7.
8.
基于面向对象和规则的遥感影像分类研究 总被引:54,自引:4,他引:54
讨论了面向对象和规则的光学遥感影像分类方法。首先利用多尺度分割形成影像对象,建立对象的层次结构,计算对象的光谱特征、几何特征、拓扑特征等,利用对象、特征形成分类规则,并通过不同对象层间信息的传递和合并实现对影像的分类。并以北京城市土地利用分类为例,对该方法进行了验证。 相似文献
9.
10.
11.
近年来,人类活动的影响加上自然因素的作用引起了一系列海岸带生态环境问题,因此,如何快速准确地提取海岸线已成为一个热门的研究课题。本文基于高分一号遥感数据,运用面向对象分类方法,结合光谱、几何等特征在图像上提取海岸线,利用已有"908基线"进行精度验证,得到沙质岸线、淤泥质岸线、生物岸线以及基岩岸线的均方根误差分别为1.7 m、34.79 m、15.27 m和4.69 m。 相似文献
12.
分水岭变换在遥感影像线状特征提取中的应用 总被引:3,自引:0,他引:3
在现有目标识别方法的基础上,提出一种结合目标的特性进行分水岭变换提取目标的方法。试验结果表明,这种方法可以有效地从遥感影像中提取线状特征。 相似文献
13.
基于eCognition的遥感图像面向对象分类方法研究 总被引:1,自引:0,他引:1
随着高分辨率遥感图像越来越普及,传统的面向像元的图像分类方法不能满足对高分辨率遥感图像区域分类的需求,高分辨率遥感图像对图像处理的软件与硬件都有了更高的要求,因此,出现了相较于面向像元有着更高精度更为合理的面向对象分类方法,也更加适用于高分辨率遥感影像。本文通过采用面向对象分类的基本方法,运用eCognition软件,以山东省胶州市地区遥感影像为例,进行多尺度分割和面向对象分类。并用ENVI做监督分类,基于目视解译精度评定,对不同方法作出分析评价。结果表明:面向对象分类方法精度更高,更具有可靠性。 相似文献
14.
15.
16.
针对高分一号遥感数据铁尾矿信息提取精度较低的问题,文中分析了铁尾矿高分遥感图像光谱、纹理及空间特征,构建了铁尾矿遥感光谱特征强化的数学模型RTI和IOT,建立了面向对象的铁尾矿高分遥感信息提取的技术流程。并以唐山典型矿山地区为研究对象,进行了铁尾矿遥感信息的提取实验和精度分析,验证了RTI和IOT强化数学模型在面向对象决策分类规则中的有效性,为铁尾矿资源的目标提取和自动监测提供了一种新的处理方法。 相似文献
17.
卫星遥感在土地监测中发挥了重要作用,而数据处理技术应具有良好的适用性和较高的精度水平以满足应用需求。针对目前种植园提取算法适用性较差、数据依赖性高、自动化程度低、算法复杂及特征冗余等问题,本文提出了一种新型种植园结构特征,多尺度多方向结构指数,通过对其进行阈值化并结合形态学处理实现了种植园的自动提取。对多种植模式、背景植被化程度和结构复杂度各不相同的全色和多光谱种植园影像分别设计了3组试验,结果证明,与传统方法相比,本文方法适用性更强,对多方向、多尺度、基元变形、种植线变形、种植模式规律性差、背景高度植被化等诸多复杂的种植园等均能进行有效提取,整体精度达到90%以上。此外,试验结果中,全色影像与多光谱影像精度相当,表明本文方法具有较低的光谱依赖性,因此在数据选择和应用上具有更大的灵活性。 相似文献
18.
19.
利用规则进行高分辨率遥感影像地物提取 总被引:1,自引:0,他引:1
针对高分辨率遥感影像中地物的复杂性和多变性带来的地物提取难点,提出了一种基于多层次规则的面向对象的典型地物提取方法。改进了基于区域增长的影像分割方法,利用小区域内的全局最优策略进行初始增长,避开了种子点的选择。利用影像分割得到的影像对象作为地物提取的基元,针对影像上典型地物选择提取特征,利用多层次的提取规则进行地物提取,总的提取精度达到87.1%。 相似文献