首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
NOAA卫星遥感与常规观测中国积雪的对比研究   总被引:10,自引:3,他引:10  
郭艳君  翟盘茂  李威 《冰川冻土》2004,26(6):755-760
利用30a来NOAA卫星遥感和常规观测的中国积雪资料,对比研究了二者在不同季节和不同年代的逐月积雪日数.研究表明:全年、秋季、冬季和春季全国64%以上地区卫星遥感与常规观测的月积雪日数显著相关,其中东北(包括内蒙东部)和北疆地区显著相关;华北和内蒙中部冬季相关最为显著;青藏高原相关程度明显偏低.值得注意的是,高原上无测站分布地区对于NOAA卫星遥感的高原空间平均年积雪日数影响不显著.NOAA卫星遥感与常规观测的青藏高原空间平均全年积雪日数未达到显著相关,二者年际变化存在一定差异.  相似文献   

2.
基于MODIS双卫星积雪遥感数据的积雪日数空间分布研究   总被引:2,自引:2,他引:2  
刘俊峰  陈仁升 《冰川冻土》2011,33(3):504-511
结合Terra和Aqua卫星的积雪产品,获取2001-2006年全国新的逐日积雪覆盖数据,并利用此数据通过两种方案获取了全国积雪日数分布,对比发现3大稳定积雪区中,新疆地区积雪稳定性及连续性最好,东北其次,而青藏高原地区最差;通过595个气象台站年积雪日数数据分区分不同植被类型修正MODIS获得的年积雪日数.结果表明:...  相似文献   

3.
中国近50a积雪日数与最大积雪深度的时空变化规律   总被引:10,自引:7,他引:3  
王春学  李栋梁 《冰川冻土》2012,34(2):247-256
通过REOF和非参数Mann-Kendall趋势检验法,以1958/1959-2007/2008年度中国557个气象台站的积雪观测资料为基础,对中国积雪日数与最大积雪深度的时空演变规律进行分析.结果表明:东北、新疆北部和青藏高原中东部为中国积雪日数和最大积雪深度的3个大值区;近50a来,春、秋季中国积雪日数和最大积雪深度在整体上呈现缓慢减少的趋势,冬季积雪日数和最大积雪深度呈现增加的趋势.气温是影响积雪产生和维持的重要因素.  相似文献   

4.
欧亚大陆积雪分布及其类型划分   总被引:2,自引:0,他引:2  
张廷军  钟歆玥 《冰川冻土》2014,36(3):481-490
利用1966-2012年欧亚大陆1152个地面气象台站积雪深度资料,对欧亚大陆积雪深度、累计积雪天数和连续积雪天数的空间分布进行了分析,以连续积雪天数为标准对欧亚大陆季节性积雪类型进行了划分,并与应用累计积雪天数对积雪区类型的划分进行了比较研究. 结果表明:欧亚大陆积雪分布具有显著纬度地带性特征,积雪深度、累计积雪天数和连续积雪天数的大值分布区均位于俄罗斯平原的东北部、科拉半岛、西西伯利亚平原、中西伯利亚高原以及俄罗斯远东北部大部分区域. 与累计积雪天数划分方法相比,利用连续积雪天数对欧亚大陆季节性积雪分区,在前苏联地区积雪类型分区差异并不显著,但蒙古和中国的稳定积雪区明显缩减,青藏高原无稳定积雪区,中国大部分地区为非周期性不稳定积雪区. 两种积雪分区划分方法比较结果显示,连续积雪天数划分方法更能体现积雪累积的连续性和持久性,更符合对稳定积雪和不稳定积雪的划分标准.  相似文献   

5.
基于气象要素的中国积雪类型划分及积雪特征分布   总被引:2,自引:2,他引:0  
李晓峰  梁爽  赵凯  王建  车涛  李震 《冰川冻土》2020,42(1):62-71
积雪分类对于深刻认识积雪性质及其时空分布具有重要意义。积雪是气候的产物, 气象参数是导致积雪性质差异的主要因素, 利用实测的气象参数能够对积雪性质进行大范围的有效分类。应用长时间序列高时空分辨率全国地面气象驱动格网数据集, 提取中国区域冬季大气温度、 降水量和近地表风速信息, 基于冬季气象要素的二叉树积雪类型划分方法, 采用Sturm等提出的季节性积雪类型划分体系, 对中国区域的积雪类型进行了划分, 相比Sturm等的积雪分类结果空间分辨率显著提高, 利用“中国积雪特性及分布调查”项目2017—2018年全国实测雪坑数据, 描述了积雪类型对应的空间统计分布特征, 为制定符合中国区域特色的积雪类型分类系统奠定了基础。积雪分类结果表明: 中国区域的积雪类型划分为5种, 分别是大草原型、 泰加林型、 苔原型、 高山型及瞬时型, 不同的中国积雪类型表现出与Sturm等的分类描述有所不同的积雪特性。  相似文献   

6.
7.
基于不同积雪日定义的积雪资料比较分析   总被引:7,自引:4,他引:7  
利用天气现象定义与积雪深度定义两种方法对全国884个台站的积雪日资料进行统计处理, 分别整理出每一台站各个积雪年的积雪日数、积雪深度、 初终雪间隔日数3个要素的两套数据, 并进行对比分析. 结果表明: 在全国东部大部分地区及新疆地区, 两种数据差别不大, 但在东北及青藏高原两套数据的差别较大. 在积雪日数的比较中, 两种数据在东北及青藏高原的差别基本都在10 d以上, 积雪深度的差别在0.4 cm以上, 初终雪间隔日数的差别以青藏高原最明显, 大部分地区的差别在15 d以上, 甚至有达到30 d以上的区域. 对青藏高原东北边坡代表站的积雪平均值进行M-K突变检验发现, 积雪深度定义的积雪日数与间隔日数减少趋势略大于天气现象定义统计的数值;而在积雪深度的比较中则相反. 两种定义的积雪间隔日数均在1987年出现突变.  相似文献   

8.
赵文宇  刘海隆  王辉  胡伟杰 《冰川冻土》2016,38(6):1510-1517
山区积雪是干旱区气候变化的重要指标因子,积雪日数与积雪分布之间有着密切关系。为了研究天山山区积雪日数空间分布特征,以MODIS8d积雪产品MOD10A2(Terra)和MYD10A2(Aqua)为数据源,首先对数据进行最大化合成,获取新疆天山500m×500m分辨率的年积雪日数,然后分析了2002-2014年13a积雪日的年际变化,并结合DEM数据分析了13a天山多年平均积雪日随高程和坡度的变化特征。结果表明:天山积雪日数分布极为不均,最大年平均积雪日数为193d,13a内天山绝大部分地区年积雪日变化趋势较为稳定,稳定区约占天山总面积的83.92%;在研究时段内天山总积雪日数主要集中在30d以内,其比例约为天山总面积的48%;各个高程带积雪日面积分布差异明显,但总体上积雪日数随着高程的增加而增加;从积雪日数随坡向分布来看,北坡、东北坡、东坡、西坡、西北坡所占面积比例(>30d)相对高于其他坡向。该研究结果对干旱区水资源估算具有参考意义。  相似文献   

9.
窦燕  陈曦 《地球科学进展》2011,26(4):441-448
选取196l-2006年天山山区海拔高于1000 m的17个气象站的月积雪日数、月最大积雪深度资料,分析天山山区季节性积雪年际变化趋势,探讨17个站点在最大雪深出现月份和海拔之间的相关性以及积雪日数和月最大雪深变化趋势的类型,以及积雪变化的气候归因.结果表明:①按最大雪深出现的月份,天山山区积雪类型可分成4种,分别是1...  相似文献   

10.
积雪是地表特征的重要参数,对辐射收支、气候和长期天气变化均有重要影响。雪本身又是一个重要的天气现象和水文气象参数,过量的降雪也会带来严重的雪灾,如牧区雪灾、雪崩和融雪洪水灾害等。因此对积雪的监测,尤其是对山区的积雪监测,具有多方面的意义。利用卫星遥感技术监测积雪已有50余年的历史,并已形成了系列业务产品。青藏高原平均海拔超过4 000 m,该地区的积雪具有重要的水文、气候和生态环境意义。由于地形复杂,人迹罕至,地面观测站点稀少,受较强太阳辐射的影响,积雪消融迅速、区域差异消融以及风吹雪等因素导致积雪分布破碎化严重,对使用遥感资料监测该地区的积雪造成的极大的困难和不确定性。随着国内外传感器技术的不断发展,光学和被动微波遥感数据的同步获取技术已经非常成熟,综合利用光学遥感数据高空间分辨率和被动微波数据不受云干扰的特点,结合机器学习、无人机等技术,将环境参数加入反演模型中,有助于提高青藏高原积雪参数反演精度。  相似文献   

11.
积雪资料的可靠程度在反映积雪变化、预估后期气候变化时非常重要, 利用青藏高原74个气象台站资料与被动微波遥感资料进行对比分析. 结果表明: 两种积雪资料在高原南部边缘、高原东部唐古拉山与念青唐古拉山东部均表现为高值区, 在柴达木盆地、高原腹地及沿雅鲁藏布江一线表现为一致的少雪区,在青海南部和藏东南地区差异较大.遥感资料的积雪深度和积雪日数变化敏感区与台站观测资料存在差异.在积雪的显著季节性特征及气候尺度上的年际变化特征方面, 遥感资料与台站资料具有很好的一致性, 但遥感资料在刻画积雪季节内波动特征方面欠佳, 且年平均积雪深度和积雪日数遥感数据偏大.对AMSR-E逐日积雪资料进行评价发现, 高原腹地总精度大于高原边缘地区, 海拔3 000 m以下的反演精度较高, 雪深在9~10 cm时的反演精度较高.  相似文献   

12.
积雪被动微波遥感研究进展   总被引:13,自引:3,他引:13  
李新  车涛 《冰川冻土》2007,29(3):487-496
积雪是冰冻圈中最活跃的要素之一,被动微波遥感具有高时间分辨率且能够迅速覆盖全球,在积雪时空变化监测中作用突出.总结分析了积雪被动微波遥感的主要模型,并对其方法、特点和适用性进行了较详细评述,重点介绍了NASA算法在雪深和雪水当量反演中的应用、反演结果的不确定性以及对它的改进.讨论新兴的积雪数据同化方法,介绍了同化被动微波观测以改进雪深和雪水当量反演精度的研究案例.评述了我国积雪被动微波遥感的进展,并且对未来可能的研究方向做出展望.  相似文献   

13.
利用1978-2005年逐日中国积雪深度数据集,分析了我国积雪空间分布特征和季节时空分布特征,并运用趋势线分析方法和均方根差模拟了积雪深度和积雪日数的变化趋势及异常空间变化特征.结果表明:青藏高原东南、青藏高原西部和南部、新疆北部和东北山区为我国积雪空间分布四大高值区.近28 a来,积雪深度和积雪日数呈增加趋势,20世纪80年代青藏高原明显增加和明显减少趋势并存,90年代整体明显增加,2000-2005年整体基本不变.青藏高原中东部、新疆北部以及东北山区为积雪深度异常变化敏感区,而青藏高原西部则为积雪日数异常变化敏感区.  相似文献   

14.
东北地区MODIS和AMSR-E积雪产品验证及对比   总被引:3,自引:0,他引:3  
通过2002-2008年6个积雪季节的Terra-Aqua/MODIS积雪产品(MOD10A2、MOD10C2)和Aqua/AMSR-E雪水当量产品,分析了东北地区积雪覆盖面积的变化特征,以研究区气象站点观测的积雪数据为真实值来验证两种产品积雪信息的精度,探讨了云覆盖、土地利用类型和雪深对积雪覆盖精度的影响.结果表明:云的存在对微波数据积雪识别的影响较小,在积雪量较多的12月至次年的2月随云量百分比的变化,MOD10A2积雪覆盖面积比例大体出现负变化.因此,在有云情况下AMSR-E数据反演积雪精度最好.对比草地、耕地、林地和居民地4种土地覆盖类型对监测积雪覆盖精度的影响,发现林地对其影响最大,在林区3种积雪产品的积雪识别精度分别为55.8%、81.2%、85.4%;雪深对AMSR-E积雪产品识别精度影响较小,总体精度为97.8%;积雪深度对MOD10A2积雪产品识别精度影响较大,总体精度为57.3%.MOD10A2、MOD10C2和AMSR-E 3种积雪产品的总体反演精度分别为69.3%、76.6%、76.3%.有必要开发适用于东北地区的积雪覆盖算法,提高估算精度,为能量平衡估算、气候模型、农业生产、土壤墒情监测服务.  相似文献   

15.
基于多源数据的西藏地区积雪变化趋势分析   总被引:2,自引:1,他引:2  
巴桑  杨秀海  拉珍  郑照军  旷达  拉巴 《冰川冻土》2012,34(5):1023-1030
利用1980—2009年气象台站的观测数据、 北半球NOAA周积雪产品和2001—2010年500 m分辨率的EOS/MODIS积雪产品等多源资料, 从不同角度对近30 a来西藏区域积雪变化趋势进行了分析. 结果表明: 不同资料分析均显示, 近30 a来西藏地区积雪不断减少, 尤其以近些年较为明显. 近30 a积雪日数、 最大积雪深度总体上呈现下降趋势, 尤其是进入21世纪以来, 下降趋势非常明显. 从秋冬春季节的积雪变化趋势来看, 冬、 春两季的积雪在减少, 而秋季在增多, 这些变化趋势都与各季节的气温和降水密切相关. NOAA资料显示, 近30 a来西藏地区的积雪覆盖面积正在逐步减少; 季节变化略有不同, 春、 秋两季略呈上升趋势, 冬、 夏两季在减少, 且夏季减少趋势较明显. MODIS资料分析表明, 近10 a来西藏地区的积雪总体呈下降趋势, 尤其是2007年下半年开始下降明显. 秋季的积雪在增加, 冬、 春、 夏三季的积雪趋于减少, 且春季的下降趋势最明显, 其次为冬季, 夏季的减少幅度最小. 不同海拔的积雪都有减少趋势, 最明显的是海拔4 000~5 000 m的积雪, 其次是海拔5 000~6 000 m段. 按地理区域分析, 近10 a来西藏东、 西、 中3个区域的积雪都呈减少趋势, 其中西部的下降趋势最明显, 其次为中部, 东部相对较稳定.  相似文献   

16.
1993—2002年中国积雪水资源时空分布与变化特征   总被引:21,自引:15,他引:21  
车涛  李新 《冰川冻土》2005,27(1):64-67
利用1993—2002年SSM/I被动微波逐日积雪深度反演结果,研究了我国积雪水资源的分布与变化.结果表明:积雪储量近10a来没有明显的减少或增加趋势,但是存在年际间的波动;我国冬季积雪储量主要分布在东北、北疆、青藏高原东部和其边缘地区,以及华北地区;东北、北疆和青藏高原地区为我国的稳定积雪地区;青藏高原地区积雪储量小于东北地区,但年积雪日数大于东北地区.近10a最大积雪水资源量平均约为102.79km3,其中最大年份为1999/2000年度,约为131.34km3.  相似文献   

17.
天山典型区卫星雪盖时空特征研究   总被引:2,自引:4,他引:2  
基于2000—2010年的MODIS/Terra积雪8 d合成数据(MOD10A2),研究了我国天山典型区积雪覆盖的空间分布特征和年际变化趋势.结果表明:年平均积雪概率和1月积雪概率均呈西高东低、北高南低的分布格局,4月、7月、10月的积雪概率与高程呈显著的正相关;冬季积雪分布主要受大气环流控制,使得西坡和北坡的积雪明...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号