共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental results are presented in this paper to study the strain softening behaviour of a marine dredged sand under plane-strain conditions. K0 consolidated drained and undrained tests were conducted using a new plane-strain apparatus to characterize the strain softening behaviour of the sand under plane-strain conditions. For medium dense specimens, strain softening and shear bands were observed to occur under both drained and undrained conditions. For very loose specimens, no shear bands were observed and critical states were reached within the homogeneous deformation region in both drained and undrained tests. Strain softening was observed to occur at small strain for very loose specimens under undrained conditions. Two types of strain softening, the homogenous softening and banding softening, were identified and the conditions for strain softening were established. The results obtained from this study were compared with the studies by Han and Vardoulakis (Géotechnique 41(1):49–78, 1991), Finno et al. (J Geotech Eng ASCE 122(6):462–473, 1996, Géotechnique 47(1):149–165, 1997) and Mokni and Desrues (Mech Cohes-Frict Mat 4:419–441, 1998). 相似文献
2.
3.
《Geomechanics and Geoengineering》2013,8(2):85-96
The results of an experimental study of the undrained behaviour of Changi sand under axisymmetric and plane-strain conditions are presented. K0 consolidated undrained plane-strain tests and K0 or isotropically consolidated triaxial tests on very loose and medium dense specimens were conducted. The undrained behaviour of sand at very loose and medium dense states under plane-strain conditions was characterised and compared with that under axisymmetric conditions. It was observed that the undrained behaviour of very loose and medium dense sand under plane strain is similar to that under axisymmetric conditions. However, because of the formation of shear bands in plane-strain tests, the post-peak behaviour of medium dense sand in plane strain is different from that in triaxial tests. It was also established that an instability line for plane-strain conditions can be defined in a way similar to that for axisymmetric conditions. Using the state parameter, a unified relationship between the normalised slope of instability line and the state parameters can be established for both axisymmetric and plane-strain conditions. Using this relationship, the instability conditions established under axisymmetric conditions can be used for plane-strain conditions. 相似文献
4.
In this paper, liquefaction potential of loose sand deposit subjected to an earthquake loading is evaluated. The analysis is performed by using a finite element technique incorporating the equations of dynamics of saturated porous elastoplastic media. The soil response is modelled by an anisotropic hardening rule, similar to that as proposed by Poorooshasb and Pietruszczak.1 The concept is based on the theory of bounding surface plasticity incorporating a non-associated flow rule and the idea of reflected plastic potential. The present paper provides a modified formulation to that discussed in Reference 1. Modifications are aimed at simplifying the concept for numerical implementations. 相似文献
5.
6.
Acta Geotechnica - The mechanical behaviour of gassy sand is rather complex owing to the inherent complex nature of sand and the occluded/dissolved gas. For better understanding of the behaviour of... 相似文献
7.
8.
By incorporating the fabric effect and Lode’s angle dependence into the Mohr–Coulomb failure criterion, a strength criterion for cross-anisotropic sand under general stress conditions was proposed. The obtained criterion has only three material parameters which can be specified by conventional triaxial tests. The formula to calculate the friction angle under any loading direction and intermediate principal stress ratio condition was deduced, and the influence of the degree of the cross-anisotropy was quantified. The friction angles of sand in triaxial, true triaxial, and hollow cylinder torsional shear tests were obtained, and a parametric analysis was used to detect the varying characteristics. The friction angle becomes smaller when the major principal stress changes from perpendicular to parallel to the bedding plane. The loading direction and intermediate principal stress ratio are unrelated in true triaxial tests, and their influences on the friction angle can be well captured by the proposed criterion. In hollow cylinder torsional shear tests with the same internal and external pressures, the loading direction and intermediate principal stress ratio are related. This property results in a lower friction angle in the hollow cylinder torsional shear test than that in the true triaxial test under the same intermediate principal stress ratio condition. By comparing the calculated friction angle with the experimental results under various loading conditions (e.g., triaxial, true triaxial, and hollow cylinder torsional shear test), the proposed criterion was verified to be able to characterize the shear strength of cross-anisotropic sand under general stress conditions. 相似文献
9.
Lúcia Carvalho Coelho Antonio Claudio Soares Nelson Francisco F. Ebecken Jos Luis Drummond Alves Luiz Landau 《国际地质力学数值与分析法杂志》2006,30(14):1477-1500
High porosity and low permeability limestone has presented pore collapse. As fluid is withdrawn from these reservoirs, the effective stresses acting on the rock increase. If the strength of the rock is overcome, pore collapse may occur, leading to irreversible compaction of porous media with permeability and porosity reduction. It impacts on fluid withdrawal. Most of reservoirs have been discovered in weak formations, which are susceptible to this phenomenon. This work presents a study on the mechanical behaviour of a porous limestone from a reservoir located in Campos Basin, offshore Brazil. An experimental program was undergone in order to define its elastic plastic behaviour. The tests reproduced the loading path conditions expected in a reservoir under production. Parameters of the cap model were fitted to these tests and numerical simulations were run. The numerical simulations presented a good agreement with the experimental tests. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
10.
小应变条件下应力路径旋转对剪切模量影响 总被引:1,自引:0,他引:1
以重塑土经 固结形成的试样以及经 固结后通过特殊应力路径达到特定应力状态的试样为对象,研究了在小应变范围内应力路径旋转对土体剪切模量的影响以及剪切模量随应变变化的趋势。研究表明,在小应变范围内:(1)剪切模量的初始值随试验应力路径与近期应力历史间的夹角 增大而增大,当两者完全相反时,应力路径旋转对土体在小应变条件下的剪切模量影响最大;完全一致时,其影响最弱。(2)割线剪切模量总是大于切线剪切模量;剪切模量随着剪切应变的增加而衰减,且衰减规律保持一致,但应力路径、应变范围不同时其衰减幅度不同。在小应变条件下,土体表现出各向异性,但随剪切应变的增加而逐渐减小,最终表示为近似各向同性;同时由应力路径旋转对模量的影响也随着剪切应变的增加而逐渐衰减。 相似文献
11.
由地下水引起的静力液化可能是边坡失稳的隐含机制之一,松砂在不排水剪切条件下可能发生静力液化,密实的颗粒集合体在特定的应变路径下也会出现相似的现象,即试样整体发生急剧的失稳,应力状态尚处于峰值强度线以内。该种失稳模式称为分散性失稳,是为了强调失稳模式中没有出现应变局部化或者剪切带。采用连续-离散耦合分析方法,研究由不规则形状颗粒组成的密实集合体在等比例应变加载路径下的力学特性。根据Hill的材料失稳理论,当试样的应力增量 和应变增量 对应的2阶功 为负时,试样即发生不可逆的整体失稳破坏。以根据不同等比例应变路径得到 曲线为界,在 平面内将试样的应力状态分为剪缩区、剪胀-稳定区和剪胀-非稳定区,连接不同围压下试样发生分散性失稳时的应力状态形成失稳线发现,峰值强度线高于临界状态线,临界状态线高于失稳线。 相似文献
12.
13.
地震作用下自由场中饱和砂土的应力-应变推导 总被引:1,自引:1,他引:1
水平自由场地震响应分析是岩土地震工程实践的重要内容之一。利用香港科技大学土工离心机上的双向振动台,进行了饱和砂土自由场在水平双向地震作用下的动力模型试验。根据应力和应变的定义以及达朗贝尔原理,由试验观测的土体加速度、位移和孔隙水压力数据直接推导得到不同深度处砂土的应力和应变,揭示了振动过程中饱和砂土的应力路径和应力-应变关系演化过程,以及与超静孔隙水压力发展的联系。 相似文献
14.
MICP联合纤维加筋改性钙质砂的动力特性研究 总被引:1,自引:0,他引:1
为了提高我国南海钙质砂地基的抗液化性能,提出利用微生物诱导碳酸钙沉积(MICP)技术联合纤维加筋技术对钙质砂进行改性处理。通过开展动三轴试验,对比分析了改性前后钙质砂试样的动应变、动孔压、应力−应变滞回曲线以及动弹性模量的发展规律和演化特征,并结合扫描电镜(SEM)试验探究了MICP和纤维加筋技术对钙质砂的联合改性机制。研究结果表明:(1)MICP技术可以明显改善钙质砂试样的抗变形与抗液化性能,相比于未胶结处理试样,仅MICP处理试样的动应变和动孔压分别降低了95.74% 和 92.46%;(2)纤维的掺入进一步提升了MICP的改性效果,相比于仅MICP处理试样,MICP和纤维加筋联合处理试样的动应变和动孔压分别降低了 74.32%和 74.18%;(3)MICP 和纤维加筋技术通过减轻试样在循环荷载作用下的循环活动强度和能量耗散、提高试样的动弹性模量和减小动弹性模量的衰减速率,从而实现试样抗变形与抗液化性能的显著提高;(4)SEM 试验分析结果表明,MICP 与纤维对钙质砂动力特性的改善具有协同作用。纤维的掺入为细菌提供了更多的附着场所,促进了碳酸钙晶体的生成量,该部分碳酸钙不仅增加了颗粒间的胶结强度,同时也将纤维固定在砂颗粒上增强了纤维网的约束作用。 相似文献
15.
The study of localized failure under controlled conditions can be accomplished within a laboratory setting with the University of Minnesota plane-strain compression apparatus. The device provides an opportunity to observe shear faulting and to compare displacements from acoustic emission (AE) sources with global measurements. A biaxial compression test on a sandstone specimen was performed with monitoring of AE. The plane-strain test showed that the shear fault was not formed until after peak load. Compaction of the shear fault was observed from the axial and lateral measurements of displacement and the orientation of the failure plane. The AE events were modeled as displacement discontinuities. The complicated deconvolution process for the transducer transfer function was eliminated by using a simplified calibration procedure. The sources of the postpeak events were characterized as being caused predominantly by slip in the direction of the global failure plane, although components of displacement associated with closing were identified. To provide an order of magnitude estimate of the slip, the field observation of a 10−4 strain drop over the seismic area was assumed. The tangential displacement from 110 AE events was estimated to be 0.01 mm. During the same period of time, the displacement along the shear fault from global measurements was 0.03 mm. 相似文献
16.
This paper studies the effects of initial fabric anisotropy of dry sand in simple shear deformation. The effects of anisotropy are taken into consideration through the modification of the mobilized friction in the Mohr–Coulomb‐type yield surface as a function of a fabric parameter. In addition, the constitutive model uses a gradient term that directly incorporates the effects of material length scale. The constitutive formulation is implemented into ABAQUS finite element code and used to simulate shearing of the dry sand under various conditions of simple shear. The numerical simulations show that while the shear stress response is affected by fabric anisotropy, its effects on strain localization in simple shear are minimal. This is in contrast to other devices such as the biaxial shear. The strain localization in simple shear is controlled more by the imposed boundary conditions. The use of material length scale is shown to remove the effects of strain localization in the shearing response. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
17.
循环加载方式与应力路径对砂土的抗液化强度有很大的影响。利用GDS空心圆柱扭剪仪对南海珊瑚砂进行了一系列复杂加载条件下均等固结不排水循环试验,探讨了90°突变应力路径下主应力方向角对珊瑚砂抗液化强度的影响。试验结果发现:以循环应力比(CSR)作为应力水平指标,当不控制中主应力系数b的变化时,主应力方向角 对珊瑚砂的抗液化强度并无显著影响;当控制b始终保持0.5时,珊瑚砂的抗液化强度随着 的增加呈现出先减小后增大的趋势,且在 45°时的抗液化强度最低。基于分析循环荷载引起的土单元大、小循环主应力 、 变化,定义了单元体循环应力比(USR)作为一个新的物理指标,发现不同循环加载方式与应力路径条件下施加于珊瑚砂试样的USR与引起液化所需的循环次数NL存在事实上的唯一性关系。通过引自文献的4种无黏性土原始试验数据的再处理,独立地验证了以USR表征砂类土液化强度的适用性。 相似文献
18.
Acta Geotechnica - Natural sands can be coated by substances of various origins, from natural to anthropogenic substances (from contamination or synthesized). Therefore, predicting the mechanical... 相似文献
19.
温度的变化能够改变水体的环境,引起周围环境中的离子吸附解吸作用的变化.不同于其他土壤,砂土的保水保肥能力更差,砂土地区一旦发生氨氮(NH+4-N)污染,情况会更加严重和突出.为防治砂土地区NH+4-N污染提供理论依据与技术支持,通过NH+4-N的静态吸附试验,研究不同温度条件下NH+4-N在粗砂、中砂、细砂中的吸附转化特征,得到如下结论:在试验设置的温度区间内,总的趋势是温度越低,砂土对NH+4-N的吸附量越高,表明温度升高对NH+4-N的吸附有抑制作用,这主要是因为吸附过程中会产生弱放热效应,进而降低渗滤介质对NH+4-N的平衡吸附量;在25~30℃区间内存在硝化与反硝化作用的临界温度,当温度低于临界温度时,NH+4-N吸附量的减少主要是由于发生了硝化反应,当温度高于临界温度时,NH+4-N的吸附量减少主要是由于发生了反硝化反应. 相似文献
20.
Experiments were conducted under static batch and dynamic flow conditions to evaluate the sorption of FeII onto three goethites (G1, G2 and G3) having different crystal habits, morphologies and surface properties. Results reveal that G1 exhibited the highest FeII sorption extent and lowest kinetic rate constant, which may result from higher surface site density, surface roughness and edge surface faces. Surface complexation modeling parameters derived from batch experiments were combined with hydrodynamic parameters to simulate breakthrough curves in goethite-coated sand packed columns. The total sorbed amount of FeII at complete breakthrough was in agreement with that expected from the batch experiments, except for G1. Sorption breakthrough predictions that make use of surface complexation parameters accurately predicted FeII mobility in G2 and G3 columns, but poorly in G1 column. Experiments at various flow rates in G1 columns represented different amounts of FeII sorbed at complete breakthrough, thereby underscoring the impact of kinetic sorption. Moreover, Fe dissolution/re-precipitation or FeII-induced transformation of goethite was suspected at the lowest flow rate in the G1 column. The influence of goethite phase specific reactivity on FeII sorption under batch versus advective–dispersive flow is herein demonstrated. These findings have strong implications to assess transport of FeII and environmental contaminants both in natural and engineered systems. 相似文献