首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A regional recovery of the Earth’s gravity field from satellite observables has become particularly important in various geoscience studies in order to better localize stochastic properties of observed data, while allowing the inversion of a large amount of data, collected with a high spatial resolution only over the area of interest. One way of doing this is to use observables, which have a more localized support. As acquired in recent studies related to a regional inversion of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) data, the satellite gravity-gradient observables have a more localized support than the gravity observations. Following this principle, we compare here the performance of the second- and third-order derivatives of the gravitational potential in context of a regional gravity modeling, namely estimating the gravity anomalies. A functional relation between these two types of observables and the gravity anomalies is formulated by means of the extended Stokes’ integral formula (or more explicitly its second- and third-order derivatives) while the inverse solution is carried out by applying a least-squares technique and the ill-posed inverse problem is stabilized by applying Tikhonov’s regularization. Our results reveal that the third-order radial derivatives of the gravitational potential are the most suitable among investigated input data types for a regional gravity recovery, because these observables preserve more information on a higher-frequency part of the gravitational spectrum compared to the vertical gravitational gradients. We also demonstrate that the higher-order horizontal derivatives of the gravitational potential do not necessary improve the results. We explain this by the fact that most of the gravity signal is comprised in its radial component, while the horizontal components are considerably less sensitive to spatial variations of the gravity field.  相似文献   

2.
随着重力和重力梯度测量技术的日趋成熟,基于重力和重力梯度数据的反演技术得到了广泛关注.针对反演多解性严重、计算效率低和内存消耗大等难点问题,本文开展了三维重力和重力梯度数据的联合反演研究,该方法结合重力和重力梯度两种数据,将L0范数正则化项加入到目标函数中,并在数据空间下采用改进的共轭梯度算法求解反演最优化问题.同时,...  相似文献   

3.
Subcrustal stress induced by mantle convection can be determined by the Earth’s gravitational potential. In this study, the spherical harmonic expansion of the simplified Navier–Stokes equation is developed further so satellite gradiometry data (SGD) can be used to determine the subcrustal stress. To do so, we present two methods for producing the stress components or an equivalent function thereof, the so-called S function, from which the stress components can be computed numerically. First, some integral estimators are presented to integrate the SGD and deliver the stress components and/or the S function. Second, integral equations are constructed for inversion of the SGD to the aforementioned quantities. The kernel functions of the integrals of both approaches are plotted and interpreted. The behaviour of the integral kernels is dependent on the signal and noise spectra in the first approach whilst it does not depend on extra information in the second method. It is shown that recovering the stress from the vertical–vertical gradients, using the integral estimators presented, is suitable, but when using the integral equations the vertical–vertical gradients are recommended for recovering the S function and the vertical–horizontal gradients for the stress components. This study is theoretical and numerical results using synthetic or real data are not given.  相似文献   

4.
Satellite missions CHAMP and GRACE dedicated to global mapping of the Earth’s gravity field yield accurate satellite-to-satellite tracking (SST) data used for recovery of global geopotential models usually in a form of a finite set of Stokes’s coefficients. The US-German Gravity Recovery And Climate Experiment (GRACE) yields SST data in both the high-low and low-low mode. Observed satellite positions and changes in the intersatellite range can be inverted through the Newtonian equation of motion into values of the unknown geopotential. The geopotential is usually approximated in observation equations by a truncated harmonic series with unknown coefficients. An alternative approach based on integral inversion of the SST data of type GRACE into discrete values of the geopotential at a geocentric sphere is discussed in this article. In this approach, observation equations have a form of Green’s surface integrals with scalar-valued integral kernels. Despite their higher complexity, the kernel functions exhibit features typical for other integral kernels used in geodesy for inversion of gravity field data. The two approaches are discussed and compared based on their relative advantages and intended applications. The combination of heterogeneous gravity data through integral equations is also outlined in the article. panovak@kma.zcu.cz  相似文献   

5.
The static Earth’s gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth’s surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet’s boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green’s kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.  相似文献   

6.
In global studies investigating the Earth’s lithospheric structure, the spectral expressions for the gravimetric forward and inverse modeling of the global gravitational and crustal structure models are preferably used, because of their numerical efficiency. In regional studies, the applied numerical schemes typically utilize the expressions in spatial form. Since the gravity-gradient observations have a more localized support than the gravity measurements, the gravity-gradient data (such as products from the Gravity field and steady-state Ocean Circulation Explorer - GOCE - gravity-gradiometry satellite mission) could preferably be used in regional studies, because of reducing significantly the spatial data-coverage required for a regional inversion or interpretation. In this study, we investigate this aspect in context of a regional Moho recovery. In particular, we compare the numerical performance of solving the Vening Meinesz-Moritz’s (VMM) inverse problem of isostasy in spectral and spatial domains from the gravity and (vertical) gravity-gradient data. We demonstrate that the VMM spectral solutions from the gravity and gravity-gradient data are (almost) the same, while the VMM spatial solutions differ from the corresponding spectral solutions, especially when using the gravity-gradient data. The validation of the VMM solutions, however, reveals that the VMM spatial solution from the gravity-gradient data has a slightly better agreement with seismic models. A more detailed numerical analysis shows that the VMM spatial solution formulated for the gravity gradient is very sensitive to horizontal spatial variations of the vertical gravity gradient, especially in vicinity of the computation point. Consequently, this solution provides better results in regions with a relatively well-known crustal structure, while suppressing errors caused by crustal model uncertainties from distant zones. Based on these findings we argue that the gravity-gradient data are more suitable than the gravity data for a regional Moho recovery.  相似文献   

7.
重力数据的物性反演面临着严重的多解性问题,降低多解性的有效手段是加入约束条件.而边界识别、深度估计及成像方法可获取地质体的水平位置、深度范围等几何参数信息,本文将基于数据本身挖掘的地质体几何参数信息约束到物性反演中,以降低反演的多解性.通过引入基于深度信息的深度加权函数及基于水平位置的水平梯度加权函数建立优化约束条件,有效地提高了反演结果的横向及纵向分辨率.重力梯度数据包含更多的地质体空间特征信息,将优化约束反演方法应用到全张量数据的反演中,模型试验表明本文方法反演结果与理论模型更加吻合.最后对美国路易斯安那州文顿盐丘实测航空重力梯度数据的应用表明,本文方法在其他地球物理、地质资料不足的情况下获得更可靠的反演结果.  相似文献   

8.
To reduce the numerical complexity of inverse solutions to large systems of discretised integral equations in gravimetric geoid/quasigeoid modelling, the surface domain of Green’s integrals is subdivided into the near-zone and far-zone integration sub-domains. The inversion is performed for the near zone using regional detailed gravity data. The farzone contributions to the gravity field quantities are estimated from an available global geopotential model using techniques for a spherical harmonic analysis of the gravity field. For computing the far-zone contributions by means of Green’s integrals, truncation coefficients are applied. Different forms of truncation coefficients have been derived depending on a type of integrals in solving various geodetic boundary-value problems. In this study, we utilise Molodensky’s truncation coefficients to Green’s integrals for computing the far-zone contributions to the disturbing potential, the gravity disturbance, and the gravity anomaly. We also demonstrate that Molodensky’s truncation coefficients can be uniformly applied to all types of Green’s integrals used in solving the boundaryvalue problems. The numerical example of the far-zone contributions to the gravity field quantities is given over the area of study which comprises the Canadian Rocky Mountains. The coefficients of a global geopotential model and a detailed digital terrain model are used as input data.  相似文献   

9.
The idea of this paper is to present estimators for combining terrestrial gravity data with Earth gravity models and produce a high‐quality source of the Earth's gravity field data through all wavelengths. To do so, integral and point‐wise estimators are mathematically developed, based on the spectral combination theory, in such a way that they combine terrestrial data with one and/or two Earth gravity models. The integral estimators are developed so that they become biased or unbiased to a priori information. For testing the quality of the estimators, their global mean square errors are generated using an Earth gravity model08 model and one of the recent products of the gravity field and steady‐state ocean circulation explorer mission. Numerical results show that the integral estimators have smaller global root mean square errors than the point‐wise ones but they are not efficient practically. The integral estimator of the biased type is the most suited due to its smallest global root mean square error comparing to the rest of the estimators. Due largely to the omission errors of Earth gravity models the point‐wise estimators are not sensitive to the Earth gravity model commission error; therefore, the use of high‐degree Earth gravity models is very influential for reduction of their root mean square errors. Also it is shown that the use of the ocean circulation explorer Earth gravity model does not significantly reduce the root mean square errors of the presented estimators in the presence of Earth gravity model08. All estimators are applied in the region of Fennoscandia and a cap size of 2° for numerical integration and a maximum degree of 2500 for generation of band‐limited kernels are found suitable for the integral estimators.  相似文献   

10.
The eigenvalue decomposition technique is used for analysis of conditionality of two alternative solutions for a determination of the geoid from local gravity data. The first solution is based on the standard two-step approach utilising the inverse of the Abel-Poisson integral equation (downward continuation) and consequently the Stokes/Hotine integration (gravity inversion). The second solution is based on a single integral that combines the downward continuation and the gravity inversion in one integral equation. Extreme eigenvalues and corresponding condition numbers of matrix operators are investigated to compare the stability of inverse problems of the above-mentioned computational models. To preserve a dominantly diagonal structure of the matrices for inverse solutions, the horizontal positions of the parameterised solution on the geoid and of data points are identical. The numerical experiments using real data reveal that the direct gravity inversion is numerically more stable than the downward continuation procedure in the two-step approach.  相似文献   

11.
12.
Based on the line integral (LI) and maximum difference reduction (MDR) methods, an automated iterative forward modelling scheme (LI‐MDR algorithm) is developed for the inversion of 2D bedrock topography from a gravity anomaly profile for heterogeneous sedimentary basins. The unknown basin topography can be smooth as for intracratonic basins or discontinuous as for rift and strike‐slip basins. In case studies using synthetic data, the new algorithm can invert the sedimentary basins bedrock depth within a mean accuracy better than 5% when the gravity anomaly data have an accuracy of better than 0.5 mGal. The main characteristics of the inversion algorithm include: (1) the density contrast of sedimentary basins can be constant or vary horizontally and/or vertically in a very broad but a priori known manner; (2) three inputs are required: the measured gravity anomaly, accuracy level and the density contrast function, (3) the simplification that each gravity station has only one bedrock depth leads to an approach to perform rapid inversions using the forward modelling calculated by LI. The inversion process stops when the residual anomalies (the observed minus the calculated) falls within an ‘error envelope’ whose amplitude is the input accuracy level. The inversion algorithm offers in many cases the possibility of performing an agile 2D gravity inversion on basins with heterogeneous sediments. Both smooth and discontinuous bedrock topography with steep spatial gradients can be well recovered. Limitations include: (1) for each station position, there is only one corresponding point vertically down at the basement; and (2) the largest error in inverting bedrock topography occurs at the deepest points.  相似文献   

13.
A geoid solution for airborne gravity data   总被引:2,自引:0,他引:2  
Airborne gravity data is usually attached with satellite positioning of data points, which allow for the direct determination of the gravity disturbance at flight level. Assuming a suitable gridding of such data, Hotine’s modified integral formula can be combined with an Earth Gravity Model for the computation of the disturbing potential (T) at flight level. Based on T and the gravity disturbance data, we directly downward continue T to the geoid, and we present the final solution for the geoid height, including topographic corrections. It can be proved that the Taylor expansion of T converges if the flight level is at least twice the height of the topography, and the terrain potential will not contribute to the topographic correction. Hence, the simple topographic bias of the Bouguer shell yields the only topographic correction. Some numerical results demonstrate the technique used for downward continuation and topographic correction.  相似文献   

14.
The Earth’s gravity potential can be determined from its second-order partial derivatives using the spherical gradiometric boundary-value problems which have three integral solutions. The problem of merging these solutions by spectral combination is the main subject of this paper. Integral estimators of biased- and unbiased-types are presented for recovering the disturbing gravity potential from gravity gradients. It is shown that only kernels of the biased-type integral estimators are suitable for simultaneous downward continuation and combination of gravity gradients. Numerical results show insignificant practical difference between the biased and unbiased estimators at sea level and the contribution of far-zone gravity gradients remains significant for integration. These contributions depend on the noise level of the gravity gradients at higher levels than sea. In the cases of combining the gravity gradients, contaminated with Gaussian noise, at sea and 250?km levels the errors of the estimated geoid heights are about 10 and 3 times smaller than those obtained by each integral.  相似文献   

15.
16.
17.
The Boundary Element Method (BEM), a numerical technique for solving boundary integral equations, is introduced to determine the earth's gravity field. After a short survey on its main principles, we apply this method to the fixed gravimetric boundary value problem (BVP), i.e. the determination of the earth's gravitational potential from measurements of the intensity of the gravity field in points on the earth's surface. We show how to linearize this nonlinear BVP using an implicit function theorem and how to transform the linearized BVP into a boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation using the single layer representation. A Galerkin method is used to transform the boundary integral equation into a linear system of equations. We discuss the major problems of this approach for setting up and solving the linear system. The BVP is numerically solved for a bounded part of the earth's surface using a high resolution reference gravity model, measured gravity values of high density, and a 50 50 m2 digital terrain model to describe the earth's surface. We obtain a gravity field resolution of 1 1 km2 with an accuracy of the order 10–3 to 10–4 in about 1 CPU-hour on a Siemens/Fujitsu SIMD vector pipeline machine using highly sophisticated numerical integration techniques and fast equation solvers. We conclude that BEM is a powerful numerical tool for solving boundary value problems and may be an alternative to classical geodetic techniques.  相似文献   

18.
In oil and mineral exploration, gravity gradient tensor data include higher-frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high-frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.  相似文献   

19.
Izvestiya, Physics of the Solid Earth - Abstract—The empirical results on estimating the resolution and high-frequency noise in the Earth’s gravity models are presented. The Schmidt...  相似文献   

20.
围绕综合利用空-地-井多源重力异常联合反演提升精度的目标,提出正则化协同密度反演方法,从而有效利用多维数据的横向和纵向变化特征提高反演精度,且无需先验信息的约束.此外,还提出利用奇异值谱和深度分辨率工具评价航空数据观测高度和层数对反演分辨率的影响.通过理论模型试验本文方法在空-地、地-井等不同情况下的应用效果,结果表明空-地-井重力异常正则化协同密度反演方法能获得更高分辨率、高精度的反演结果,且证明不同的钻孔位置对反演结果有较大的影响,从而可指导实际的空-地-井联合勘探.最后,利用文顿盐丘实际勘探数据进行空地和空地井重力数据协同反演,反演结果垂向分辨率明显优于地面观测数据反演结果,盐盖的顶面及中心埋深与前人研究和地质资料解释相吻合,验证了方法正确性及实用性,为推进我国空-地-井立体重磁勘探提供了重要的技术手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号