首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The down‐dip portion of submarine fans comprises terminal lobes that consist of various gravity flow deposits, including turbidites and debrites. Within lobe complexes, lobe deposition commonly takes place in topographic lows created between previous lobes, resulting in an architecture characterized by compensational stacking. However, in some deep water turbidite systems, compensational stacking is less prominent and progradation dominates over aggradation and lateral stacking. Combined outcrop and subsurface data from the Eocene Central Basin of Spitsbergen provide a rare example of submarine fans that comprise progradationally stacked lobes and lobe complexes. Evidence for progradation includes basinward offset stacking of successive lobe complexes, a vertical change from distal to proximal lobe environments as recorded by an upward increase in bed amalgamation, and coarsening and thickening upward trends within the lobes. Slope clinoforms occur immediately above the lobe complexes, suggesting that a shelf‐slope system prograded across the basin in concert with deposition of the lobe complexes. Erosive channels are present in proximal axial lobe settings, whereas shallow channels, scours and terminal lobes dominate further basinward. Terminal lobes are classified as amalgamated, non‐amalgamated or thin‐bedded, consistent with turbidite deposition in lobe axis, off‐axis and fringe settings, respectively. Co‐genetic turbidite–debrite beds, interpreted as being deposited from hybrid sediment gravity flows which consisted of both turbulent and laminar flow phases, occur frequently in lobe off‐axis to fringe settings, and are rare and poorly developed in channels and axial lobe environments. This indicates bypass of the laminar flow phase in proximal settings, and deposition in relative distal unconfined settings. Palaeocurrent data indicate sediment dispersal mainly towards the east, and is consistent with slope and lobe complex progradation perpendicular to the NNW–SSE trending basin margin.  相似文献   

2.
3.
Despite a globally growing seismic and outcrop analogue data set, the detailed (centimetre to decametre) internal stratal make up of deep‐marine basin‐floor ‘channelized‐lobe’ strata remain poorly known. An ancient analogue for modern, mixed‐sediment, passive margin, deep‐marine basin‐floor fans is the well‐preserved Neoproterozoic Upper and Middle Kaza groups in the southern Canadian Cordillera. This succession is a few kilometres thick and comprises six sedimentary facies representing deposition from different kinds of sediment‐gravity flows. Representative lateral and vertical assemblages of one or more of these facies comprise six stratal elements, including: isolated scours, avulsion splays, feeder channels, distributary channels, terminal splays, and distal and off‐axis fine‐grained turbidite units. The internal characteristics of the various stratal elements do not differ from more distal to more proximal settings, but the relative abundance of the various stratal elements does. The difference in relative abundance of stratal elements in the kilometre‐scale stratigraphy of the Kaza Group results in a systematic upward change in architecture. The systematic arrangement of the stratal elements within the interpreted larger bodies, or lobes, and then lobes within the basin‐floor fan, suggests a hierarchical organization. In this article a hierarchy is proposed that is based on avulsion but, also importantly, the location of avulsion. The proposed avulsion‐based hierarchical scheme will be a useful tool to bridge the scalar gap between outcrop and seismic studies by providing a single stratigraphic framework and terminology for basin‐floor stratal elements.  相似文献   

4.
5.
J. R. INESON 《Sedimentology》1989,36(5):793-819
The Cretaceous of west James Ross Island, Antarctica represents the proximal fill of a late Mesozoic back-arc basin that was probably initiated by oblique extension during the early development of the Weddell Sea. The succession records sedimentation in two contrasting depositional systems: a laterally persistent slope apron flanking the faulted basin margin interrupted both spatially and temporally by coarse-grained submarine fans. Slope apron deposits are dominated by thinly interbedded turbiditic sandstones and mudstones (mudstone association), interspersed with non-channelized chaotic boulder beds, intraformational slump sheets and isolated exotic blocks representing a spectrum of mass-flow processes from debris flow to submarine gliding. Localized sand-rich sequences (sandstone-breccia association) represent sandy debris lobes at the mouths of active slope chutes. The submarine fan sediments (conglomerate association) are typified by coarse conglomerates and pebbly sandstones, interpreted as the deposits of high-density turbidity currents and non-cohesive debris flows. Three assemblages are recognized and are suggested to represent components of the inner channelled zone of coarse-grained submarine fans, from major fan channels through ephemeral, marginal channels or terraces to levee or interchannel environments. The occurrence of both slope apron and submarine fan depositional systems during the Early and Mid-Cretaceous is attributed to localized input of coarse arc-derived sediment along a tectonically active basin margin. Periods of extensive fan development were probably linked to regional tectonic uplift and rejuvenation of the arc source region; cyclicity within individual fan sequences is attributed to migration or switching of fan channels or canyons. Slope apron sedimentation was controlled largely by intrabasinal tectonics. Local unconformities and packets of amalgamated slide sheets and debris flow deposits probably reflect episodic movement on basin margin faults. Differential subsidence across the basin margin anchored the basin slope for at least 20 Myr and precluded basinward progradation of shallow marine environments.  相似文献   

6.
Deepwater/deep-marine turbidite lobes are the most distal part of a siliciclastic depositional system and hold the largest sediment accumulation on the seafloor. As many giant hydrocarbon provinces have been discovered within deepwater lobe deposits, they represent one of the most promising exploration targets for hydrocarbon industry. Deepwater exploration is characterized by high cost, high risk but insufficient data because of the deep/ultra–deepwater depth. A thorough understanding of the deepwater turbidite lobe architecture, hierarchy, stacking pattern and internal facies distribution is thus vital. Recently, detailed outcrop characterizations and high–resolution seismic studies have both revealed that the deepwater lobe deposits are characterized into four–fold hierarchical arrangements from "beds", to "lobe elements", to "lobes" and to "lobe complex". Quantitative compilations have shown that hierarchical components of lobe deposits have similar length to width ratios but different width to thickness ratios depending on different turbidite systems. At all hierarchical scales, sand–prone hierarchical lobe units are always separated by mud–prone bounding units except when the bounding units are eroded by their overlying lobe units thus giving rise to vertical amalgamation and connectivity. Amalgamations often occur at more proximal regions suggesting high flow energy. A mixed flow behavior may occur towards more distal regions, resulting in deposition of "hybrid event beds". These synthesized findings could(1) help understand the lobe reservoir distribution and compartmentalization therefore benefit the exploration and development of turbidite lobes within the deep marine basins(e.g. South China Sea) and(2) provide rules and quantitative constraints on reservoir modeling. In addition, the findings associated with deepwater turbidite lobes might be a good starting point to understand the sedimentology, architecture and hierarchy of turbidites in deep lacustrine environment.  相似文献   

7.
GARY G. LASH 《Sedimentology》1988,35(3):429-447
The Upper Ordovician Martinsburg Formation of eastern Pennsylvania consists of mudstone, siltstone, and sandstone turbidites that accumulated in a tectonically active foreland basin. The mudstone-rich Bushkill Member, the stratigraphically lowest unit of the Martinsburg in this area, grades upward into approximately equal proportions of mudstone, siltstone, and sandstone of the Ramseyburg Member. Many of the turbidites of these units are arranged in small-scale (1–9 m) fining-upward sequences that are interpreted as reflecting the influence of external or allocyclic controls such as variations in the local rate of sea-level rise and/or variations in the intensity of tectonic activity in shelf/nearshore or hinterland areas rather than more commonly cited autocyclic mechanisms. The thick (approximately 2000 m) Bushkill-Ramseyburg coarsening-upward sequence records progradation of a muddy turbidite depositional system along the axis of the foreland basin. Although this sequence accumulated during a Caradocian eustatic rise in sea-level, sedimentation rates landward of the shoreline were apparently great enough to allow for long-term seaward progradation of the shelf source. The paucity of depositional lobe-like facies (coarsening-upward sequences) in the Bushkill Member allows for tentative comparison of the progradational Bushkill-Ramseyburg system with the active fan lobe of the Mississippi Fan. Progradation of the Bushkill-Ramseyburg system ceased abruptly when mudstone turbidites and laminated black shale of the upper unit of the Martinsburg, the Pen Argyl Member, accumulated. The great thickness of some mudstone turbidite beds of the Pen Argyl Member is interpreted to record topographic confinement of the central Appalachian foreland basin, which may have helped to preclude continued progradation of the Bushkill-Ramseyburg turbidite system.  相似文献   

8.
《Precambrian Research》2005,136(1):1-26
Late Riphean to early Vendian metasedimentary rocks of the Offerdal Nappe, central Scandinavian Caledonides, were studied by field mapping and measured sections. Even though the rocks have been metamorphosed and tectonically deformed, preserved sedimentary structures and outcrop exposure permit the interpretation of a little-known area with respect to the break-up of Rodinia. This work shows that although the primary sedimentary textures are strongly altered during metamorphism the primary sedimentary structures and bed geometries are commonly preserved. Moreover, the sedimentary structures, where identified, can be used to hydrodynamically estimate the primary grain-size of the metasedimentary rocks.Seven sedimentary facies were identified in three tectonostratigraphic units. The lower tectonostratigraphic unit consists of polymict conglomerates deposited in alluvial fans. The lower part of the middle tectonostratigraphic unit consists of channelled turbidite deposits. The upper part of the middle tectonostratigraphic unit consists of a regressive to transgressive succession with southeast to northwest transition from fluvial deposits, to storm-dominated deposits and into offshore mudstones. The lower part of the upper tectonostratigraphic unit consists of a regressive succession with southeast to northwest transition from channelled turbidites into sheet-like turbidites. The upper part consists of fluvial deposits in updip (southeast) areas, whereas in downdip (northwest) areas the sheet-like turbidites reflect continued deepwater deposition.(1) The ∼1500 m thickness of the Offerdal succession, (2) the occurrence of >300 m thickness of the pebble- to boulder-bearing continental-basement derived alluvial fan conglomerates, (3) the high sediment input rates, and (4) the high subsidence rates suggest an actively subsiding basin and a relatively uplifted hinterland. Furthermore, the arkosic composition of the Offerdal metasandstones, as well as the Precambrian porphyry, syenite and quartzite clast composition of the lithic conglomerates, recognised from the subjacent continental basement of Baltica, suggest a continental sediment source. The rapid accommodation changes, and especially the simultaneous subsidence of downdip areas and uplift of updip areas in UTU2 suggest syn-depositional extensional block rotation. Collectively, this evidence suggests that the Offerdal succession was deposited in a continental rift basin related to break-up of Rodinia.  相似文献   

9.
Sedimentological characteristics and zircon provenance dating of the Babulu Formation in the Fohorem area, Timor-Leste, provide new insights into depositional process, detailed sedimentary environment and the distribution of source rocks in the provenance. Detrital zircon sensitive high-resolution ion microprobe (SHRIMP) U–Pb ages range from Neoarchean to Triassic, with the main age pulses being Paleozoic to Triassic. In addition, the maximum deposition ages based on the youngest major age peak (ca 256–238 Ma) of zircon grains indicate that the basal sedimentation of the Babulu Formation occurred after the early Upper Triassic. The formation consists predominantly of mudstone with minor sandstone, limestone and conglomerate that were deposited in a deep marine environment. These deposits are composed of six lithofacies that can be grouped into three facies associations (FAs) based on the constituent lithofacies and bedding features: basin plain deposits (FA I), distal fringe lobe deposits (FA II) and medial to distal lobe deposits (FA III). The predominance of mudstone (FA I) together with intervening thin-bedded sandstones (FA II) suggest that the paleodepositional environment was a low energy setting with slightly basin-ward input of the distal part of the depositional lobes. Discrete and abrupt occurrences of thick-bedded sandstone (FA III) within the FA I mudstone suggests that sandstone originated from a collapse of upslope sediments rather than a progressive progradation of deltaic turbidites. This combined petrological and geochronological study demonstrates that the Babulu Formation in the Fohorem area of the Timor-Leste was initiated as a submarine lobe system in a relatively deep marine environment during the Upper Triassic and represents the extension of the Gondwana Sequence at the Australian margin.  相似文献   

10.
The Maesan fan-delta-fed slope system in the Miocene Pohang Basin occurs between two Gilbert-type fan deltas. Detailed analysis of sedimentary facies and bed geometry reveals that the sequence is represented by 13 sedimentary facies. These facies can be organized into three facies associations, representing distinct depositional environments: alluvial fan (facies association I), steep-faced slope (facies association II), and basin plain (facies association III). Subaerial debris flows and dense, inertia-dominated currents were transformed into subaqueous sediment gravity flows in steep-faced slope environments. Further downslope, these flows were channelized and formed lobate conglomerate and sandstone bodies at the terminal edge of the channels (or chutes). Interchannel and interlobe areas were dominated by homogeneous mudstone and muddy sandstone, deposited by suspension settling of fine-grained materials. Part of the steep-faced slope deposits experienced large-scale slides and slumps. The chutes/channels, lobes and splays on the steep-faced slope of the Maesan system are similar to those in modern subaqueous coarse-grained fan-delta systems.  相似文献   

11.
Seabed topography is ubiquitous across basin‐floor environments, and influences sediment gravity flows and sediment dispersal patterns. The impact of steep (several degrees) confining slopes on sedimentary facies and depositional architecture has been widely documented. However, the influence of gentle (fraction of a degree) confining slopes is less well‐documented, largely due to outcrop limitations. Here, exceptional outcrop and research borehole data from Unit A of the Permian Laingsburg Formation, South Africa, provide the means to examine the influence of subtle lateral confinement on flow behaviour and lobe stacking patterns. The dataset describes the detailed architecture of subunits A.1 to A.6, a succession of stacked lobe complexes, over a palinspastically restored 22 km across‐strike transect. Facies distributions, stacking patterns, thickness and palaeoflow trends indicate the presence of a south‐east facing low angle (fraction of a degree) lateral intrabasinal slope. Interaction between stratified turbidity currents with a thin basal sand‐prone part and a thick mud‐prone part and the confining slope results in facies transition from thick‐bedded sandstones to thin‐bedded heterolithic lobe fringe‐type deposits. Slope angle dictates the distance over which the facies transition occurs (hundreds of metres to kilometres). These deposits are stacked vertically over tens of metres in successive lobe complexes to form an aggradational succession of lobe fringes. Extensive slides and debrites are present at the base of lobe complexes, and are associated with steeper restored slope gradients. The persistent facies transition across multiple lobe complexes, and the mass flow deposits, suggests that the intrabasinal slope was dynamic and was never healed by deposition during Unit A times. This study demonstrates the significant influence that even subtle basin‐floor topography has on flow behaviour and depositional architecture of submarine lobe complexes. In addition, we present a new aggradational lobe fringe facies associations and recognition criteria for subtle confinement in less well‐exposed and subsurface basin fills.  相似文献   

12.
The Crati Basin is a Pliocene-Holocene extensional basin filled by the progradation of different types of marine fan-delta systems. Coarse-grained Gilbert-type fan-deltas developed during the Pleistocene. They represent the sedimentary response to a strong differential uplift involving the basin margins and the basin itself. The differential uplift was responsible for the fragmentation of the basin into several sub-basins, into which these fan-deltas prograded. The protection and lateral confinement by structural highs, steep coastlines and the absence of strong tidal action in the adjacent Ionian Sea, allowed the regular progradation of these fan-deltas in the restricted gulfs and narrow embayments of the Crati Basin. For the classical Gilbert-type (fan) deltas in lacustrine settings, homopycnal inflow favours a rapid mixing of water masses and deposition of sediment close to the river mouth. In the case of the example described here, the density contrast between the sea water and the inflowing river water caused the separation of the muddy fraction from the coarse sandy and conglomeratic part of the sediment. This allowed the development of steep mud-poor coarse-grained delta foresets. Slope instability features (slump scars, conglomeratic flow slides) are fairly scarce in the proximal parts of the San Lorenzo del Vallo system. Towards the north, where protection from the Ionian Sea was less, they increase in importance.  相似文献   

13.
近年来,在东非坦桑尼亚盆地深水区相继发现大型气藏,但其沉积特征、形成机理及主控因素研究较为薄弱。综合利用钻井、测井及二维地震资料,对其沉积特征进行分析,发现研究区渐新统发育深水重力流沉积,包括水道、堤岸、朵叶等,并以水道—朵叶沉积为主。根据水道的发育位置、外部形态、内部构型、沉积方式等,将其进一步分为复合型、侧向迁移型、垂向加积型和孤立型水道。研究区渐新统自南向北重力流沉积特征存在差异: 盆地南部以小规模孤立型水道、朵叶沉积为主,呈近SW-NE向展布;盆地中部以复合型、垂向加积型、侧向迁移型水道、朵叶沉积为主,整体呈NW-SE向展布;盆地北部以侧向迁移型水道、堤岸及朵叶沉积为主,展布方向与中部基本一致。针对南北差异,以源-汇系统耦合关系研究为主旨,对盆地各部源-汇系统要素进行对比分析,结果表明,研究区深水重力流沉积体系的发育与展布主要受构造运动(构造抬升、洋中脊扩张运动、断层活动)、供源体系、陆架—陆坡地形3大因素共同控制。  相似文献   

14.
针对下刚果盆地中新统重力流沉积演化及其控制因素认识不够明确的问题,利用下刚果盆地X区块丰富的三维地震、测井及岩心资料,在建立中新统层序格架的基础上,精细识别了重力流沉积单元类型,系统揭示了重力流沉积演化特征并探讨了其控制因素。区内中新统可划分为SQ1(下中新统)、SQ2(中中新统下段)、SQ3(中中新统上段)及SQ4(上中新统)等4个三级层序,主要发育块体搬运、重力流水道(包括侵蚀过路水道、受限侵蚀水道、弱受限侵蚀—加积水道)、天然堤及朵叶体等沉积单元。SQ1早期,重力流沉积多在拉张区呈NW—SE向分布,主导沉积单元为朵叶体。SQ2早期,重力流沉积分布较广(呈NW—SE向),主导发育弱受限侵蚀—加积水道。SQ3早期,重力流沉积在研究区北部呈NWW—SEE向发育且以受限侵蚀水道为主。SQ4早期,重力流沉积全区发育(E—W走向),主导发育侵蚀过路水道。SQ1~SQ4,重力流沉积总体北迁、进积。刚果河携带大量物源向深水搬运(气候变冷、构造隆升及海平面下降所致)是重力流沉积大规模进积的第一要素,陆缘结构(掀斜陆架和宽缓陆坡)及陆坡坡度变化(断层及盐构造所致)控制了沉积分散过程和砂体横向分布。该...  相似文献   

15.
The main sediment depocenter along the Oman margin is the Al Batha turbidite system that develops in the Gulf of Oman basin. It is directly connected to the wadi Al Batha, and forms a typical sand and mud rich point source system that acts as regional sediment conduit and feeds a ~ 1000 km2 sandy lobe.The Al Batha lobe depositional architecture has been investigated in detail using very high-resolution seismic, multibeam echosounder data and sediment cores. Several scales of depositional architecture can be observed. The Al Batha lobe is composed of several depositional units, made of stacked elementary sediment bodies (thinner than 5 m) that are each related to a single flow event. The lobe is connected to the feeder system through a channel-lobe transition zone (CLTZ) that extends on more than 25 km. The lobe can be divided into proximal, middle and distal lobe areas. The proximal lobe is an area of erosion and by-pass with small axial feeder channels that rapidly splay into several small distributaries. They disappear in the mid-lobe area where deposits consist of vertically stacked tabular to lens-shaped sediment bodies, with a lateral continuity that can exceed 10 km. The distal lobe fringe shows a classical facies transition towards thin-bedded basin plain deposits.Sub-surface deposits consist of sandy turbidites and hyperpycnites, interbedded with fine-grained deposits (thin turbidites, hyperpycnites, or hemipelagites). Although these distal deposits are mainly related to flow transformations and concentration evolution, they highlight the importance of flooding of the wadi Al Batha on the sediment transfer to the deep basin. The thick sandy hyperpycnites recovered in such a distal area are also possibly related to the initial properties of gravity flows, in relation to the flooding characteristics of mountainous desert streams.Finally, the Al Batha lobe depositional architecture is typical of sand-rich lobes found within “small”, sand and mud rich turbidite systems fed by mountainous “dirty” rivers. Turbidite sedimentation in the Al Batha system appears to be primarily controlled by the strong climatic and geomorphic forcing parameters (i.e. semi-arid environment with ephemeral, mountainous rivers subjected to flash-flooding).  相似文献   

16.
This paper presents a model of facies distribution within a set of early Cretaceous, deep‐lacustrine, partially confined turbidite fans (Sea Lion Fan, Sea Lion North Fan and Otter Fan) in the North Falkland Basin, South Atlantic. As a whole, ancient deep‐lacustrine turbidite systems are under‐represented in the literature when compared with those documented in marine basins. Lacustrine turbidite systems can form extensive, good quality hydrocarbon reservoirs, making the understanding of such systems crucial to exploration within lacustrine basins. An integrated analysis of seismic cross‐sections, seismic amplitude extraction maps and 455 m of core has enabled the identification of a series of turbidite fans. The deposits of these fans have been separated into lobe axis, lobe fringe and lobe distal fringe settings. Seismic architectures, observed in the seismic amplitude extraction maps, are interpreted to represent geologically associated heterogeneities, including: feeder systems, terminal mouth lobes, flow deflection, sinuous lobe axis deposits, flow constriction and stranded lobe fringe areas. When found in combination, these architectures suggest ‘partial confinement’ of a system, something that appears to be a key feature in the lacustrine turbidite setting of the North Falkland Basin. Partial confinement of a system occurs when depositionally generated topography controls the flow‐pathway and deposition of subsequent turbidite fan deposits. The term ‘partial confinement’ provides an expression for categorising a system whose depositional boundaries are unconfined by the margins of the basin, yet exhibit evidence of internal confinement, primarily controlled by depositional topography. Understanding the controls that dictate partial confinement; and the resultant distribution of sand‐prone facies within deep‐lacustrine turbidite fans, is important, particularly considering their recent rise as hydrocarbon reservoirs in rift and failed‐rift settings.  相似文献   

17.
印支造山带对华南地质演化具有重要影响,南盘江盆地作为华南与印支造山带相关的最大的盆地,其构造演化过程备受关注,然而对于盆地由伸展到挤压的构造转换时限还存在争议。西林县位于南盘江盆地的中部,古生界和中-下三叠统出露良好,是进行沉积大地构造学研究的理想地区。为进一步明确南盘江盆地的构造演化过程,本文选取南盘江盆地中部西林县一带中-下三叠统进行了详细的沉积相分布和演化、古水流以及碎屑组成分析。结果表明,空间上,下三叠统自下而上自北向南依次出露:(1)泥岩、泥灰岩、砂屑灰岩和凝灰岩构成的潮坪-泻湖相沉积;(2)砾岩、含砾砂岩、细砂岩和粉砂岩构成的块体搬运沉积(MTD,Mass-transport deposit)与浊积扇相沉积互层;(3)中粗砂岩、粉砂岩、泥岩组成的浊积扇相沉积,构成向上水体急剧加深的沉积序列。中三叠统为一套浊积扇相沉积,由粗砂岩、细砂岩、粉砂岩和泥岩组成。古水流和碎屑组成分析结果显示,西林县一带下三叠统碎屑物主要来自北侧西林-隆林一带的碳酸盐岩台地,而中三叠统碎屑除来自北侧相邻碳酸盐岩台地外,还可能来自江南造山带、康滇古陆、云开地块和峨眉山玄武岩。沉积相的垂向变化记录了西林一带由古生代孤立碳酸盐岩台地向三叠纪半深海浊积岩盆地的演化过程,而早三叠世MTD是盆地张开过程中的直接沉积记录,以上地质事实暗示了南盘江盆地在早三叠世受控于区域伸展体制,西林一带的古生代孤立碳酸盐岩台地则是伸展过程中形成的断隆。盆地内的基性岩墙侵位(258~248Ma)以及西林一带早三叠世晶屑沉凝灰岩的锆石U-Pb年代学分析结果(249.4±1.2Ma)表明南盘江盆地在晚二叠世至早三叠世处于伸展构造背景之下,中三叠统为半深海浊积岩沉积则表明这一伸展过程至少持续至中三叠世。由于在时间上和空间上,南盘江盆地的张开都与古特提斯分支洋盆的俯冲消减有关,因而我们认为南盘江盆地也是晚二叠世到中三叠世古特提斯洋岩石圈俯冲体系的一部分。由于南盘江盆地及其邻近区缺失上三叠统沉积,这可能说明古特提斯洋俯冲结束于中三叠世。  相似文献   

18.
Depositional slope systems along continental margins contain a record of sediment transfer from shallow‐water to deep‐water environments and represent an important area for natural resource exploration. However, well‐preserved outcrops of large‐scale depositional slopes with seismic‐scale exposures and tectonically intact stratigraphy are uncommon. Outcrop characterization of smaller‐scale depositional slope systems (i.e. < 700 m of undecompacted shelf‐to‐basin relief) has led to increased understanding of stratigraphic packaging of prograding slopes. Detailed stacking patterns of facies and sedimentary body architecture for larger‐scale slope systems, however, remain understudied. The Cretaceous Tres Pasos Formation of the Magallanes Basin, southern Chile, presents a unique opportunity to evaluate the stratigraphic evolution of such a slope system from an outcrop perspective. Inherited tectonic relief from a precursor oceanic basin phase created shelf‐to‐basin bathymetry comparable with continental margin systems (~1000 m). Sedimentological and architectural data from the Tres Pasos Formation at Cerro Divisadero reveal a record of continental margin‐scale depositional slope progradation and aggradation. Slope progradation is manifested as a vertical pattern exhibiting increasing amounts of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The well‐exposed, seismic‐scale outcrop is characterized by four 20 to 70 m thick sandstone‐rich successions, separated by mudstone‐rich intervals of comparable thickness (40 to 90 m). Sedimentary body geometry, facies distribution, internal bedding architecture, sandstone richness and degree of amalgamation were analysed in detail across a continuous 2·5 km long transect parallel to depositional dip. Deposition in the lower section (Units 1 and 2) was dominated by poorly channellized to unconfined sand‐laden flows and accumulation of mud‐rich mass transport deposits, which is interpreted as representing a base of slope to lower slope setting. Evidence for channellization and indicators of bypass of coarse‐grained turbidity currents are more common in the upper part of the > 600 m thick succession (Units 3 and 4), which is interpreted as reflecting increased gradient conditions as the system accreted basinward.  相似文献   

19.
于水  程涛  陈莹 《地球科学》2012,37(4):763-770
尼日尔三角洲盆地深水沉积研究是目前世界油气勘探的热点问题之一.通过对三维地震资料、岩心及测井曲线分析,揭示了尼日尔三角洲盆地南部地区新近系深水沉积体系特征.基于不同属性的层序界面识别,研究区划分出SQ1-SQ6共6个三级层序,并建立层序地层格架,进而总结出研究区深水沉积模式.研究区除堆积正常半深海-深海泥岩外,还广泛发育海底扇沉积,海底扇由浊积水道和海底扇朵体组成,其中水道分支少、弯度大,外部形态类似曲流河;朵体平面上成朵叶状分布,可以划分为末端朵体和决口扇朵体.研究区新近系地层自下向上由老到新,相对海平面先下降再上升,SQ1-SQ4层序以海底扇朵体沉积为主,SQ5-SQ6层序以浊积水道沉积为主.   相似文献   

20.
湘西地区志留纪沉积体系及典型前陆盆地的形成模式研究   总被引:5,自引:0,他引:5  
李斌  胡博文  石小虎 《地学前缘》2015,22(6):167-176
湘西地区发育志留系中、下志留统碎屑岩地层,缺失上志留统。经沉积学综合研究,可以划分出滞留盆地、浊积扇、三角洲、潮坪滨岸等沉积体系,从下向上海平面逐渐下降,其物源来自于东南部雪峰隆起。湘西地区志留纪沉积盆地构造演化经历了前陆盆地的形成期、发展期及萎缩期、消亡期几个阶段。其沉积构造演化规律为:前陆盆地初始形成期发育深水滞留盆地沉积体系;前陆盆地发展期发育海相浊积扇沉积体系;前陆盆地萎缩期发育三角洲沉积体系,前陆盆地消亡期发育潮坪沙坝滨岸沉积体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号