首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Spectra of accretion disks in dwarf novae and some novalike stars have been computed. Many simplifications to the general model of the nature of a cataclysmic variable are needed to make the system numerically tractable. The necessity, justification, and implications of such simplifications are discussed together with the influences of some system parameters on the disk radiation.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

3.
Maximum possible acceleration due to out-gassing from cometary nuclei is calculated for H2O and CO(N2) molecules. It is found that the maximum excess velocity at great distance is 0.18 km s–1 so that excess velocities less than this value are compatible with the non-gravitational acceleration due to non-symmetric out-gassing. On the other hand, Comet 1975q and comet 1955V have excess velocities 0.81 and 0.80 km s–1 respectively. These comets may be regarded as the candidates for possible interstellar comets.  相似文献   

4.
The gravitational potential due to uniform disks and rings   总被引:1,自引:0,他引:1  
The gravitational potential due to thin uniform disks and rings is obtained in closed form in terms of complete elliptic integrals.  相似文献   

5.
The determination of the potential and force due to a thin exponential model disk galaxy and a polytropicn=4 model spherical galaxy are conducted in the light of the study of collision dynamics.Results indicate that the potential due to the sphere and the disk along its plane are equal at a distance of about 1/3R, whereR is the radius of either configuration. Interior to this distance, the potential due to the sphere is greater than that due to the disk and beyond this distancevice versa.These results are expected to lead to the construction of simple models for galaxies, useful in the study of collision dynamics.  相似文献   

6.
The extrasolar planets discovered to date possess unexpected orbital elements. Most orbit their host stars with larger eccentricities and smaller semi-major axes than similarly sized planets in our own Solar System do. It is generally agreed that the interaction between giant planets and circumstellar disks (Type II migration) drives these planets inward to small radii, but the effect of these same disks on orbital eccentricity, ?, is controversial. Several recent analytic calculations suggest that disk-planet interactions can excite eccentricity, while numerical studies generally produce eccentricity damping. This paper addresses this controversy using a quasi-analytic approach, drawing on several preceding analytic studies. This work refines the current treatment of eccentricity evolution by removing several approximations from the calculation of disk torques. We encounter neither uniform damping nor uniform excitation of orbital eccentricity, but rather a function d?/dt that varies in both sign and magnitude depending on eccentricity and other Solar System properties. Most significantly, we find that for every combination of disk and planet properties investigated herein, corotation torques produce negative values of d?/dt for some range in ? within the interval [0.1, 0.5]. If corotation torques are saturated, this region of eccentricity damping disappears, and excitation occurs on a short timescale of less than 0.08 Myr. Thus, our study does not produce eccentricity excitation on a timescale of a few Myr—we obtain either eccentricity excitation on a short time scale, or eccentricity damping on a longer time scale. Finally, we discuss the implications of this result for producing the observed range in extrasolar planet eccentricity.  相似文献   

7.
8.
Recently, a 16-day periodicity in a fast radio burst was reported. We propose that this 16-day periodicity may be due to forced precession of the neutron star by a fallback disk. When the rotation axis is misaligned with respect to the normal direction of the disk plane, the neutron star will precess. The eccentricity of the neutron star may be due to rotation or strong magnetic field, or similar reasons. We found that the 16-day period may be understood using typical masses of the fallback disk. Polarization observations and information about the neutron star rotation period may help to discriminate different models. The possible precession observations in pulsars, magnetars and fast radio bursts may be understood together considering forced precession by a fallback disk.  相似文献   

9.
The center-to-limb variation of the excess intensity in faculae was obtained for 266 active regions with an accuracy of 10–3. For this observation full-disk images were obtained with a rotating one-dimensional diode array whose rotation axis was set at the disk center, at the wavelength of 5450 Å with a bandpass of 400 Å. From the center-to-limb variation of excess intensity of active regions the excess effective temperature was found to be 6.4 K on the average where the mean longitudinal magnetic field is 65 G as measured by 5233 Å line. In other words the ratio of the excess radiative flux to the total flux was 0.44% on the average for the present measurements of low spatial resolution of 20.The average excess intensity for 60 active regions near the disk center was found to be 4 × 10–4 of the quiet Sun intensity. This very low excess brightness averaged over the whole active region, in contrast to the reported high excess brightness of facular points (diameter 0.2) of 0.4, leads to a hypothesis that the background in between facular points in the active region is darker than the true quiet photosphere by 1%. It is further surmised that the inferred darkness of intra facular points is due to partial compensation for excess total irradiance of facular points. This interpretation is also consistent with previous observations of the contrast of facular points near the limb.  相似文献   

10.
Using a 2 1/2-D fully relativistic electromagnetic particle-in-cell code (PIC) we have investigated a potential electron acceleration mechanism in solar flares. The free energy is provided by ions which have a ring velocity distribution about the magnetic field direction. Ion rings may be produced by perpendicular shocks, which could in turn be generated by the super-Alfvénic motion of magnetic flux tubes emerging from the photosphere or by coronal mass ejections (CMEs). Such ion distributions are known to be unstable to the generation of lower hybrid waves, which have phase velocities in excess of the electron thermal speed parallel to the field and can, therefore, resonantly accelerate electrons in that direction. The simulations show the transfer of perpendicular ion energy to energetic electrons via lower hybrid wave turbulence. With plausible ion ring velocities, the process can account for the observationally inferred fluxes and energies of non-thermal electrons during the impulsive phase of flares. Our results also show electrostatic wave generation close to the plasma frequency: we suggest that this is due to a bump-in-tail instability of the electron distribution.  相似文献   

11.
This paper presents the study of the flow and heat-transfer characteristics in the unsteady flow of liquid metals due to a rotating disk subjected to a transverse magnetic field. The effects of the magnetic field are studied for various Prandtl numbers when the surface of the disk is subjected to cooling or heating. Numerical calculations have been carried out applying a finite difference approximation. It is found that as the magnetic parameter increases the velocities decrease while the temperature increases. Imposing suction the velocities increase while the temperature decreases. As the Prandtl number increases the temperature decreases. The increase of the magnetic parameter to values larger than 7.5 does not cause any variation to the velocities and temperature. Results are also presented for the heat-transfer rate and the displacement and momentum thickness.  相似文献   

12.
We analyze the interactions between Saturn's coorbital satellites, Janus and Epimetheus, and the outer edge of the A ring, which is presumably maintained by these moons at their 7:6 resonance. Using two distinct but conceptually related methods, we show that ring torques are driving these satellites into a tighter lock. Unless there is a counterbalancing force which we have neglected, their orbital configuration will evolve from the current horseshoe-type lock to one of tadpole orbits around a single Lagrange point in ~20 myr. This finding adds an additional member to the list of short time scale problems associated with the interactions between Saturn's rings and its inner moons  相似文献   

13.
We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle \(\theta _b\) and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75c), and in conical flow with \(\theta _b\) > \(\sim 30^\circ \) for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.  相似文献   

14.
In the inner regions of an accretion disc around a black hole, relativistic protons can interact with ambient matter to produce electrons, positrons and γ-rays. The resultant steady-state electron and positron particle distributions are self-consistently computed taking into account Coulomb and Compton cooling,  e e+  pair production (due to γ–γ annihilation) and pair annihilation. While earlier works used the diffusion approximation to obtain the particle distributions, here we solve a more general integro-differential equation that correctly takes into account the large change in particle energy that occurs when the leptons Compton scatter off hard X-rays. Thus this formalism can also be applied to the hard state of black hole systems, where the dominant ambient photons are hard X-rays. The corresponding photon energy spectrum is calculated and compared with broad-band data of black hole binaries in different spectral states. The results indicate that the γ-ray spectra  ( E > 0.8 MeV)  of both the soft and hard spectral states and the entire hard X-ray/γ-ray spectrum of the ultrasoft state could be due to p–p interactions. These results are consistent with the hypothesis that there always exists in these systems a γ-ray spectral component due to p–p interactions that can contribute between 0.5 and 10 per cent of the total bolometric luminosity. The model predicts that GLAST would be able to detect black hole binaries and provide evidence for the presence of non-thermal protons, which in turn would give insight into the energy dissipation process and jet formation in these systems.  相似文献   

15.
Afterglows from most gamma-ray bursts, such as GRBs 970228, 970508, 971214, 980329 and 980703, decay slowly and steadily. These bursts are widely believed to be due to isotropic fireballs. However, they in fact can also be well fitted by a cylindrical jet model. It is proposed that these bursts are probably generated by cylindrical jets, and not necessarily by isotropic fireballs.  相似文献   

16.
伽玛射线暴:各向同性火球还是柱形喷流?   总被引:2,自引:0,他引:2  
多数伽玛射线暴的光学余辉衰减较平缓且光变曲线未见明显拐折,通常认为它们产生于各向同性火球,GRBs970228,970508,971214,980329及980703等就是典型的例子,但柱型喷流模型其实也能对这类伽玛射线暴的余辉给出极好的拟合,因此它们完全有可能产生于柱形喷流,而并非一定是来自各向同性火球。  相似文献   

17.
The tidal force effects of a spherical galaxy passing head-on through a disk galaxy have been studied at various regions of the disk galaxy and for various orientations of the disk galaxy with respect to the direction of relative motion of the two galaxies. The density distribution of the disk galaxy is taken to be, (r)=ce–4r/R , where c is the central density andR is the radius of the disk. The density distribution of the spherical galaxy is taken to be that of a oolytrope of indexn=4. It is found that as a result of the collision, through the central parts and the outer parts of the disk galaxy remain intact, the region in between these two regions disrupts. Thus a ring galaxy with a nucleus embedded in the ring-i.e., a ring galaxy of the RN-type, is formed.  相似文献   

18.
In a disk with a low optical depth, dust particles drift radially inward by the Poynting-Robertson (P-R) drag rather than are blown out by stellar radiation pressure following destructive collisions. We investigate the radial distribution of icy dust composed of pure ice and refractory materials in dust-debris disks taking into account the P-R drag and ice sublimation. We find that icy dust particles form a dust ring by their pile-ups at the edge of their sublimation zone, where they sublime substantially at the temperature 100-110 K. The distance of the dust ring is 20-35 AU from the central star with its luminosity L??30L and 65(L?/100L)1/2 AU for L??30L, where L is the solar luminosity. The effective optical depth is enhanced by a factor of 2 for L??100L and more than 10 for L??100L. The optical depth of the outer icy dust disk exceeds that of the inner disk filled with refractory particles, namely, the residue of ice sublimation, which are further subjected to the P-R effect. As a result, an inner hole is formed inside the sublimation zone together with a dust ring along the outer edge of the hole.  相似文献   

19.
Dust particles exposed to the stellar radiation and wind drift radially inward by the Poynting-Robertson (P-R) drag and pile up at the zone where they begin to sublime substantially. The reason they pile up or form a ring is that their inward drifts due to the P-R drag are suppressed by stellar radiation pressure when the ratio of radiation pressure to stellar gravity on them increases during their sublimation phases. We present analytic solutions to the orbital and mass evolution of such subliming dust particles, and find their drift velocities at the pileup zone are almost independent of their initial semimajor axes and masses. We derive analytically an enhancement factor of the number density of the particles at the outer edge of the sublimation zone from the solutions. We show that the formula of the enhancement factor reproduces well numerical simulations in the previous studies. The enhancement factor for spherical dust particles of silicate and carbon extends from 3 to more than 20 at stellar luminosities L?=0.8-500L, where L is solar luminosity. Although the enhancement factor for fluffy dust particles is smaller than that for spherical particles, sublimating particles inevitably form a dust ring as long as their masses decrease faster than their surface areas during sublimation. The formulation is applicable to dust ring formation for arbitrary shape and material of dust in dust-debris disks as well as in the Solar System.  相似文献   

20.
The rotation of the surface layer of the Sun is found to have been accelerated secularly from the sunspot data of 1943 to 1986. To represent the overall state of rotation of the differentially rotating Sun, we define an indexM, by integrating the angular momentum density over the whole surface of the Sun, and call it the angular momentum layer density. The indexM increased monotonically or secularly from 1943 to 1986. This period corresponds to solar cycles 18, 19, 20, and 21. The monotonic increase ofM indicates that a net angular momentum must have steadily been coming from the layer down below the surface. The differential rotation latitudinal dependence profile did not change much from cycle 18 to cycle 20, but at cycle 21 the degree of equatorial acceleration dropped. This aspect is discussed in the context of the 55-year grand cycle. Cycle 21 is the start of grand cycle VI. The latitudinal dependence is less steep at cycle 21. The time scale of secular change of the indexM reflects the time scale of change of linkage of the surface and the deep layer in form of the angular momentum transfer, and that the time scale of the profile change of the differential rotation reflects the time scale of the angular momentum transfer within the surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号