首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper set up a series of comprehensive targets based on the concept of 'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling material. Then, a type of permeable graded gravel is proposed, suitable for high-speed railway subgrade. A series of in-door water retention, permeability, and frost heave tests were performed under different graded conditions. Water retention, permeability, and frost heave characteristic of different graded filling materials can be determined, in order to define the gradation range of permeable graded gravel. Relying on the frost-heave monitoring record of high speed railway in Northeast China, a series of experimental studies were performed, which included on-site filler production, compaction test, and the anti-frost effect test, in order to improve the production and compaction techniques of permeable graded gravel. From the research of this paper, the use of permeable graded gravel subgrade as the anti-frost structure for the high-speed railway subgrade in cold areas is feasible.  相似文献   

2.
This paper presents methods for monitoring frost heave, device requirements, testing principals, and data analysis requirements, such as manual leveling observation, automatic monitoring (frost heave, frost depth, and moisture), track dynamic detection, and track status detection. We focused on the requirements of subgrade frost heave monitoring for high speed railways, and the relationship of different monitoring methods during different phases of the railway. The comprehensive monitoring system of high speed railway subgrade frost heave provided the technical support for dynamic design during construction and safe operation of the rail system.  相似文献   

3.
With the development of high-speed railway in China, composite foundation with rigid piles has become a standard solution of meeting the high requirements of stability and post-construction settlement ...  相似文献   

4.
Dynamic performance of insulation is one of the key parameters during the insulation application for high-speed railway subgrade. This paper conducted laboratory and field tests for the materials and dynamic load,especially for thermal performance, elastic deformation, and accumulated deformation of insulation materials.Experiment results show that mechanical properties of insulation layer structure are stable, which satisfies the requirements of the high speed railway.  相似文献   

5.
The main reasons for a breach of trouble-free operation of the subgrade are the different kinds of deformation, such as train load impact on subgrade surface, loss of stability to subgrade slope, weight of embankment on the base, and partial or complete failure of the railway track due to frost heaving. This paper gives a summary of deformation analysis methods being developed in Russia to estimate the operating conditions of the railway subgrade.  相似文献   

6.
To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, summer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and attenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compartments was similar. These results have great significance for enhanced understanding of the characteristics of train-induced vibration embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions.  相似文献   

7.
In the numerical simulation of long-term subgrade temperature fields, the daily variation of soil temperature at a certain depth h is negligible. Such phenomenon is called the "boundary layer theory."Depth h is defined as the boundary layerthickness and the soil temperature at h is approximately equal to a temperature increment plus the average atmosphere temperature. In the past, the boundary layer thickness and temperature increment were usually extracted from monitored data in the field. In this paper, a method is proposed to determinate the boundary layer thickness and temperature increment. Based on the typical designs of highway or railway, the theoretical solution of boundary layer thickness is inferred and listed. Further, the empirical equation and design chart for determining the temperature increment are given in which the following factors are addressed, including solar radiation, equivalent thermal diffusivity and convective heat-transfer coefficient. Using these equations or design charts, the boundary layer thickness and temperature increment can be easily determined and used in the simulation of long-term subgrade temperature fields. Finally, an example is conducted and used to verify the method. The result shows that the proposed method for determining the upper thermal boundary of subgrade is accurate and practical.  相似文献   

8.
Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain track geometry. Challenges culminate on high-speed lines, where the tolerances for roughness are the tightest. Problems may result in highly increased track maintenance and need for temporary speed restrictions. The causes of frost action can be associated with subsoil, subballast or ballast. The major concern in frost protection is to avoid the freezing of frost susceptible subsoil by using sufficient thickness of subballast and relying on non-frost-susceptible subballast material. This paper provides an overview of the main research findings on the role of ballast, subballast and subsoil in frost action. In new construction the material specifications, design procedures and construction methods have been developed to ensure adequate performance of track substructures, but special challenges exist in managing existing tracks that were not designed for modern requirements. In order to perform cost-effective and sustainable track maintenance, it is necessary to recognize the problem areas and define the root-causes of problems. For locating the problem sections and defining the causes of defects, a sophisticated analysis based on integration of track geometry and ground penetrating radar (GPR) data has been developed and is summarized in this paper.  相似文献   

9.
The operation of a railway track in cold regions results in the premature deformation of subgrade soils caused by significant temperature fluctuations and ecological imbalance. Identification and calculation of the thawing degree of permafrost soils, frost heaving of clays, and groundwater flooding require careful engineering and geological surveying. The paper describes the unique, long-standing experience of the university scientists connected with maintaining the Russian East-Siberian and Trans-Baikal Railways'' facilities. Specific features of and requirements for the surveying, depending on the geological and climatic conditions, are identified.  相似文献   

10.
The uneven frost heave of frost-susceptible subgrade soil causes track irregularity, which highly enhances train vibration and affects the comfort and safety of railway transportation. This paper presents a coupled thermo-hydro-mechanical (THM) analysis for the freezing behavior of railway located above a box culvert. The vertical acceleration of the vehicle, an indicator of riding comfort, is predicted through a vehicle dynamic model. The results reveal that the existence of a box culvert changes the subgrade thermal pattern, leading to a deeper frost penetration depth. The frost heave amount above the box culvert is larger than the adjacent section, resulting in uneven track structure upheave and track irregularity. This frost-induced track irregularity highly affects train vibration.  相似文献   

11.
The temperature distributions of different parts of a subgrade were analyzed based on the results of three years of monitoring data from the Harbin-Qiqihaer Passenger Dedicated Line, a high-speed railway, including the slope toes, shoulders, and natural ground. The temperature variation with time and the maximum frozen depths showed that an obvious sunny-shady effect exists in the railway subgrade, which spans a seasonal frozen region. Development of frost heave is affected by the asymmetric temperature distribution. The temperature field and the maximum frozen depths 50 years after the subgrade was built were simulated with a mathematical model of the unsteady phase transition of the geothermal field.  相似文献   

12.
Quantitative regional assessments of streambed sedimentation and its likely causes are hampered because field investigations typically lack the requisite sample size, measurements, or precision for sound geomorphic and statistical interpretation. We adapted an index of relative bed stability (RBS) for data calculated from a national stream survey field protocol to enable general evaluation of bed stability and anthropogenic sedimentation in synoptic ecological surveys. RBS is the ratio of bed surface geometric mean particle diameter (Dgm) divided by estimated critical diameter (Dcbf) at bankfull flow, based on a modified Shield's criterion for incipient motion. Application of RBS to adequately depict bed stability in complex natural streams, however, has been limited because typical calculations of RBS do not explicitly account for reductions in bed shear stress that result from channel form roughness. We modified the index (RBS) to incorporate the reduction in bed shear stress available for sediment transport that results from the hydraulic resistance of large wood and longitudinal irregularities in channel dimensions (“form roughness”). Based on dimensional analysis, we derived an adjustment to bankfull shear stress by multiplying the bankfull hydraulic radius (Rbf) by the one-third power of the ratio of particle-derived resistance to total hydraulic resistance (Cp/Ct)1/3, where both resistances are empirically based calculations. We computed Cp using a Keulegan equation relating resistance to relative submergence of bed particles. We then derived an empirical equation to predict reach-scale hydraulic resistance Ct from thalweg mean depth, thalweg mean residual depth, and large wood volume based on field dye transit studies, in which total hydraulic resistance Ct was measured over a wide range of natural stream channel complexity, including manipulation of large wood volumes. We tested our estimates of Ct and RBS by applying them to data from a summer low flow probability sample of 104 wadeable stream reaches in the Coastal Ecoregion of Oregon and Washington, USA. Stream discharges calculated using these Ct estimates compared favorably with velocity–area measurements of discharge during summer low flow, and with the range of 1 to 2-year recurrence floods (scaled by drainage area) at U.S.Geological Survey gauged sites in the same region. Log [RBS] ranged from − 4.2 to + 0.98 in the survey region. Dgm ranged from silt to boulders, while estimated bankfull critical diameter, Dcbf, ranged from very fine gravel to large boulders. The median value of Dcbf (adjusted for form roughness influences) averaged 40% (inter quartile range 28 to 59%) of the unadjusted estimate Dcbf. Log[RBS] was consistently negatively related to human disturbances likely to produce excess sediment inputs or hydrologic alteration. Log [RBS] ranged from − 1.9 to + 0.5 in the streams within the lower quartile of human disturbance in their basin and riparian areas and was substantially lower (− 4.2 to − 1.1) in streams within the upper quartile of human disturbance. The synoptic survey methods and designs we used appear adequate to evaluate regional patterns in bed stability and sedimentation and their general relationship to human disturbances. Although the RBS concept also shows promise for evaluating sediment and bed stability in individual streams, our approach is relatively coarse, so site-specific assessments using these rapid field methods might prudently be confined to identifying severe cases of sedimentation or channel alteration. Greater confidence to discern subtle differences in site-specific assessments could be gained by calculating RBS using more precise field measurements of channel slope, bed particle size and bankfull dimensions, and by refining our adjustments for energy loss from channel form roughness.  相似文献   

13.
Radical grain size changes between two main units of a sedimentary megacycle in a foreland basin are commonly interpreted to result from changes in tectonic activity or climate in the adjacent mountain range. In central Nepal, the Cenozoic Siwalik molasse deposits exposed in the frontal Himalayan folds are characterized by such a radical grain size transition. Locally gravel deposits completely replace sands in vertical succession over approximately a hundred metres, the median grain size (D50) displaying a sharp increase by a factor of ca. 100. Such a rapid gravel‐sand transition (GST) is also observed in present‐day river channels about 8–20 km downstream from the outlet of the Siwalik Range. The passage from gravel‐bed channel reaches (proximal alluvial fans) to sand‐bed channel reaches (distal alluvial fans) occurs within a few kilometres on the Gangetic Plain in central Nepal, and the D50 ratio between the two types of channels equals ca. 100. We propose that the dramatic and remarkably similar increase in grain size observed in the Neogene Siwalik series and along modern rivers in the Gangetic foreland basin, results from a similar hydraulic process, i.e. a grain sorting process during the selective deposition of the sediment load. The sudden appearance of gravels in the upper Siwalik series would be related to the crossing of this sorting transition during progressive southward migration of the gravel front, in response to continuous Himalayan orogen construction. And as a consequence, the GST would be diachronous by nature. This study demonstrates that an abrupt change in grain size does not necessarily relate to a change in tectonic or climatic forcing, but can simply arise from internal adjustment of the piedmont rivers to the deposition and run out of coarse bedload. It illustrates, in addition, the genesis of quartz‐rich conglomerates in the Himalayan foreland through gravel selective deposition associated with differential weathering, abrasion processes and sediment recycling during thrust wedge advance and shortening of the foreland basin.  相似文献   

14.
Crushed rock subgrade, as one of the roadbed-cooling methods, has been widely used in the Qinghai-Tibet Railway. Much attention has been paid on the cooling effect of crushed rock; however, the mechanical properties of crushed rock are somehow neglected. Based on the discrete element method, biaxial compression test condition for crushed rock is compiled in FISH language in PFC2D, and the natural shape of crushed rock is simulated with super particle "cluster". The effect of particle size, crushed rock strength and confining pressure level on overall mechanical properties of the crushed rock aggregate are respectively analyzed. Results show that crushed rock of large particle size plays an essential framework role, which is mainly responsible for the deformation of crushed rock aggregate. The strength of gravel has a great influence on overall mechanical properties which means that strength attenuation caused by the freeze thaw cycles cannot be ignored. The stress-strain curves can be divided into two stages including shear contraction and shear expansion at different confining pressures.  相似文献   

15.
Gravel-bed surfaces are characterized by morphological features occurring at different roughness scales. The total shear stress generated by the flow above such surfaces is balanced by the sum of friction drag (grain stress) and form drag components (created by bed forms). To facilitate a better understanding of total resistance and bed load transport processes, there is a need to mathematically separate shear stress into its component parts. One way to do so is to examine the properties of vertical velocity profiles above such surfaces. These profiles are characterized by an inner layer that reflects grain resistance and an outer layer that reflects total resistance. A flume-based project was conducted to address these concerns through systematically comparing different roughness scales to ascertain how increased roughness affects the properties of vertical velocity profiles. Great care was taken to create natural roughness features and to obtain flow data at a high spatial and temporal resolution using an Acoustic Doppler Velocimeter.Average vertical velocity profiles above each roughness scale were clearly segmented. The vertical extent of the inner flow region was directly related to the scale of roughness present on the bed (and independent of flow depth), increasing with increased roughness. On a rough but rather uniform “plane” bed made of heterogeneous coarse sediments (with no bed forms), the shape of the velocity profile was clearly dominated by the local variations in grain characteristics. When pebble clusters were superimposed, the average shear stress in the outer flow region increased by 100% from the plane bed conditions. The ratio of inner grain shear stress to outer total shear stress for this pebble cluster experiment was 0.18 under shallow flow conditions and 0.3 under deep flow conditions. The grain stress component that should be used in bed load transport equations therefore appears to vary in these experiments between 15% and 30% of the total channel stress, increasing with decreased resistance. Roughness height (Ks/D50) values at the grain scale for the plane bed and pebble cluster experiments were 0.73 and 0.63, respectively. These are values that should be used in flow resistance equations to predict grain resistance and grain stress for bed load transport modeling.  相似文献   

16.
Dynamic characteristics of heavy-haul railway subgrade under vibratory loading in cold regions are investigated via low-temperature dynamic triaxial tests with multi-stage cyclic loading process. The relationship between dynamic shear stress and dynamic shear strain of frozen soil of subgrade under train loading and the influence of freezing temperatures on dynamic constitutive relation, dynamic shear modulus and damping ratio are observed in this study. Test results show that the dynamic constitutive relations of the frozen soils with different freezing temperatures comply with the hyperbolic model, in which model parameters a and b decrease with increasing freezing temperature. The dynamic shear modulus of the frozen soils decreases with increasing dynamic shear strains initially, followed by a relatively smooth attenuation tendency, whereas increases with decreasing freezing temperatures. The damping ratios decrease with decreasing freezing temperatures. Two linear functions are defined to express the linear relationships between dynamic shear modulus (damping ratio) and freezing temperature, respectively, in which corresponding linear coefficients are obtained through multiple regression analysis of test data.  相似文献   

17.
长江三峡阶地的成因机制   总被引:15,自引:0,他引:15  
根据对长江三峡阶地堆积物进行的野外调查与室内分析发现三峡阶地的成因具有以下特点:构成阶地上部的河漫滩相堆积、中部的冲积砾石层与作为阶地基座的基岩平台是在不同时期形成的;阶地上部河漫滩相堆积是在中全新世气候温暖、长江三峡高水位条件下形成的.因此,长江三峡阶地是在构造上升的基础上由于气候及长江三峡流量及水位变化而形成的,并非一定是间歇性构造上升的标志.  相似文献   

18.
Sediment dynamics have an important influence on the morphological evolution of tidal wetlands, which consist of mudflats and salt marshes. To understand the nature of sediment behavior under combined current-wave action at an exposed tidal wetland, we measured the waves, currents, water depths, bed-level changes, and sediment properties at a mudflat-salt marsh transition on the Yangtze Delta, China, during five consecutive tides under onshore winds of ~ 8 m/s, and calculated the bed shear stresses due to currents (τc), waves (τw), combined current-wave action (τcw), and the critical shear stress for erosion of the bottom sediment (τce). The bed shear stresses under combined current-wave action (τcw) were approximately five times higher on the mudflat (up to 1.11 N/m2; average 0.27 N/m2) than on the salt marsh (up to 0.14 N/m2; average, 0.06 N/m2). On the mudflat, τcw was larger than the critical erosion shear stress (τce = 0.103 N/m2) for 70% of the period of submergence, whereas τcw was always lower than τce at the salt marsh site (τce = 0.116 N/m2). This result indicates that the sediment dynamics on the mudflat were dominated by erosion, whereas at the salt marsh they were governed by deposition, which is in agreement with the observed bed-level change during the study period (− 3.3 mm/tide on the mudflat and 3.0 mm/tide on the salt marsh). A comparison of τcw values calculated using the [van Rijn, 1993] and [Soulsby, 1995] models for bed shear stresses under combined current-wave action indicates that both models are applicable to the present case and effectively predict the bottom shear stress under combined current-wave action. Overall, we conclude that τcw in combination with τce is useful in assessing the hydrodynamic mechanisms that underlie the morphological evolution of exposed tidal wetlands.  相似文献   

19.
Xu Jiongxin 《Geomorphology》1996,17(4):351-359
Due to the changes in environmental factors during a river's historical development, underlying gravel layers are found in many large plain rivers. When the buried depth of this gravel layer is within the reach of down-cutting by clear water scour after reservoir construction, it may be exposed and exert a far-reaching influence on channel adjustment. In Hanjiang River, the longest tributary of the Yangtze River in China, down-cutting has been greatly reduced and even stopped, due to the total change of bed material composition. The exposure of a gravel layer results in a dramatic increase in the bed's hydraulic roughness, so the channel slope may increase after a decline during the period prior to the exposure of the gravel layer. Moreover, the exposed gravel layer increases the erosion resistance of bed material, making a lower relative erosion resistance of bank to bed material. Where the bank's erosional resistance is weak, this may lead to a tendency towards channel widening.  相似文献   

20.
通过对不同沙源供给条件下各种砾石床面的风沙流结构、床面风蚀及堆积沙量变化的风洞实验,结果表明,风沙流结构是判断戈壁风沙流饱和与不饱和的一个重要途径,不同的戈壁风沙流结构对床面输、阻沙特性具有不同的指示意义。近地表0~6 cm高度内的风沙流结构决定了床面的输、阻性质,而6 cm以上的风沙流结构反映了风力对沙物质的输送状况。沙源供给的丰富与否,决定了风沙流的饱和程度,以及风沙流在砾石床面产生的蚀积状况。同等风速条件下,饱和风沙流的输沙率是非饱和风沙流输沙率的2~8倍。在饱和风沙流情形下,床面过程总体以积沙为主,且随风力的增强,床面积沙量急剧增加。在不饱和风沙流情形下,砾石床面总体以风蚀和输送沙物质过程为主,风沙流结构在0~2 cm高度内反映出砾石床面具有明显的阻沙功能,在2~5 cm高度上出现最大输沙值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号