首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ 13C1 and δ13C2 values ranging mainly from ?35‰ to ?30‰ and ?27‰ to ?22‰, respectively, high δ13C excursions (round 10) between ethane and methane and predominant methane in hydrocarbon gases with most C1/(C1-C5) ratios in excess of 0.95, suggesting an origin of coal-derived gas. The gases exhibit different carbon isotopic profiles for C1-C4 alkanes with those of the natural gases found in the Lower Paleozoic of this basin, and believed to be originated from Carboniferous-Permian coal measures. The occurrence of regionally pervasive gas accumulation is distinct in the gently southward-dipping Shanbei slope of the central basin. It is noted that molecular and isotopic composition changes of the gases in various gas reservoirs are associated with the thermal maturities of gas source rocks. The abundances and δ13C values of methane generally decline northwards and from the basin center to its margins, and the effects of hydrocarbon migration on compositional modification seem insignificant. However, C isotopes of autogenetic calcites in the vertical and lateral section of reservoirs show a regular variation, and are as a whole depleted upwards and towards basin margins. Combination with gas maturity gradient, the analysis could be considered to be a useful tool for gas migration.  相似文献   

2.
Surface adsorbed gas surveys and geo-microbiological surveys are well known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish inter-se exploration priorities amongst the identified warm areas. The thermogenic surface adsorbed gaseous hydrocarbons distribution patterns in petroliferous areas are considered to be a credible evidence for the upward migration of hydrocarbons. The present investigation aims to explore correlation between the adsorbed gas distribution pattern and microbial oxidizers in identifying the upward migration of hydrocarbons especially in the tropical black soil terrain of known petroliferous Mehsana Block of North Cambay Basin, India. A set of 135 sub-soil samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotope ratios (13Cmethane and δ13Cethane). The microbial prospecting studies showed the presence of high bacterial population for methane (5.4 × 106 cfu/gm), ethane (5.5 × 106 cfu/gm), propane (4.6 × 106 cfu/gm) and butane oxidizing bacteria (4.6 × 106 cfu/gm) in soil samples. The light gaseous hydrocarbon analysis showed that the concentration ranges of C1, C2, C3, iC4 and nC4 are 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb, respectively, and the value of carbon isotope ranges of methane ?29.5 to ?43.0‰ (V-PDB) and ethane ?19.1 to ?20.9‰ (V-PDB). The existence of un-altered petroliferous microseep (δ13C, ?43‰) of catagenetic origin is observed in the study area. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/gas fields of Mehsana. Microbial surveys can independently precede other geochemical and geophysical surveys to delineate area warm with hydrocarbons, and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the Mehsana Block of Cambay Basin.  相似文献   

3.
Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata through deep faults. These deep fluids not only lead to large-scale accumulations of CO_2, CH_4, H_2, He and other gases, but also significantly impact hydrocarbon generation and accumulation through organic-inorganic interactions. With the development of deep faults and magmatic-volcanic activities in different periods, most Chinese petroliferous basins have experienced strong impacts associated with deep fluid activity. In the Songliao, Bohai Bay, Northern Jiangsu, Sanshui, Yinggehai and Pearl Mouth Basins in China, a series of CO_2 reservoirs have been discovered. The CO_2 content is up to 99%, with δ~(13)C_(CO2) values ranging from-4.1‰ to-0.37‰ and ~3He/~4He ratios of up to 5.5 Ra. The abiogenic hydrocarbon gas reservoirs with commercial reserves, such as the Changde, Wanjinta, Zhaozhou, and Chaoyanggou reservoirs, are mainly distributed in the Xujiaweizi faulted depression of the Songliao Basin. The δ~(13)CCH4 values of the abiogenic alkane gases are generally -30‰ and exhibit an inverse carbon isotope sequence of δ~(13)C_(CH4)δ~(13)C_(C2H6)δ~(13)C_(C3H8)δ~(13)C_(C4H10). According to laboratory experiments, introducing external H_2 can improve the rate of hydrocarbon generation by up to 147% through the kerogen hydrogenation process. During the migration from deep to shallow depth, CO_2 can significantly alter reservoir rocks. In clastic reservoirs, feldspar is easily altered by CO_2-rich fluids, leading to the formation of dawsonite, a typical mineral in high CO_2 partial pressure environments, as well as the creation of secondary porosity. In carbonate reservoirs, CO_2-rich fluids predominately cause dissolution or precipitation of carbonate minerals. The minerals, e.g., calcite and dolomite, show some typical features, such as higher homogenization temperatures than the burial temperature, relatively high concentrations of Fe and Mn, positive Eu anomalies, depletion of 18 O and enrichment of radiogenic ~(87)Sr. Due to CO_2-rich fluids, the development of high-quality carbonate reservoirs is extended to deep strata. For example, the Well TS1 in the northern Tarim Basin revealed a high-quality Cambrian dolomite reservoir with a porosity of 9.1% at 8408 m, and the Well ZS1 C in the central Tarim Basin revealed a large petroleum reserve in a Cambrian dolomite reservoir at ~6900 m. During the upward migration from deep to shallow basin strata, large volumes of supercritical CO_2 may extract petroleum components from hydrocarbon source rocks or deep reservoirs and facilitate their migration to shallow reservoirs, where the petroleum accumulates with the CO_2. Many reservoirs containing both supercritical CO_2 and petroleum have been discovered in the Songliao, Bohaiwan, Northern Jiangsu, Pearl River Mouth and Yinggehai Basins. The components of the petroleum trapped with CO_2 are dominated by low molecular weight saturated hydrocarbons.  相似文献   

4.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

5.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

6.
Gas concentrations and isotopic compositions of He and CO2 were determined on free gas samples from ten hot springs of the Rehai geothermal field, Tengchong, China. The results showed that hot-spring CO2 gas, together with He,was derived mainly from the mantle, indicating the accumulation of mantle-derived volatiles beneath the survey area. The δ^13C values of CO2, higher than those of the typical mantle-derived carbon and the isotopic composition of hot-spring-free CO2 in unequilibrium with dissolved CO2, are recognized only in the Rehai geothermal field, suggesting that there seems to be a still-degassing magmatic intrusion at depths, which provides mantle-derived volatiles to the hydrothermal system above. The accumulation of those volatiles has probably played an important role in triggering earthquakes in this region.In addition, the isotopic characteristics of He and C also indicate that the magmatic intrusion seems to have been derived from the MORB source, and could be contaminated by crustal materials during its upwelling through the continental crust.  相似文献   

7.
The Maoniuping REE deposit, located about 22 km to the southwest of Mianning, Sichuan Province, is the second largest light REE deposit in China, subsequent to the Bayan Obo Fe-Nb-REE deposit in the Inner Mongolia Autonomous Region. Tectonically, it is located in the transitional zone between the Panxi rift and the Longmenshan-Jinpingshan orogenic zone. It is a carbonatite vein-type deposit hosted in alkaline complex rocks. The bastnaesite-barite, bastnaesite-calcite, and bastnaesite-microcline lodes are the main three types of REE ore lodes. Among these, the first lode is distributed most extensively and its REE mineralization is the strongest. Theδ34Sv-CDT values of the barites in the ore of the deposit vary in a narrow range of +5.0 to +5.1‰in the bastnaesite-calcite lode and +3.3 to +5.9‰in the bastnaesite-barite lode, showing the isotopic characteristics of magma-derived sulfur. Theδ13Cv-PDB values and theδ518OV-SMOW values in the bastnaesite-calcite lode range from -3.9 to -6.9‰and from +7.3 to +9.7‰, respectively, which fall into the range of "primary carbonatites", showing that carbon and oxygen in the ores of the Maoniuping deposit were derived mainly from a deep source. Theδ13Cv-PDB values of fluid inclusions vary from -3.0 to -5.6‰, with -3.0 to -4.0‰in the bastnaesite-calcite lode and -3.0 to -5.6‰in the bastnaesite-barite lode, which show characteristics of mantle-derived carbon. TheδDv-SMOW values of fluid inclusions range from -57 to -88‰, with -63 to -86‰in the bastnaesite-calcite lode and -57 to -88‰in the bastnaesite-barite lode, which show characteristics of mantle-derived hydrogen. Theδ18OH2OV-SMOW values vary from +7.4 to +8.6‰in the bastnaesite calcite lode, and +6.7 to +7.8‰in the bastnaesite-barite lode, almost overlapping the range of +5.5 to +9.5‰for magmatic water. The 4He content, R/Ra ratios are (13.95 to 119.58×10-6 (cm3/g)STP and 0.02 to 0.11, respectively, and 40Ar/36Ar is 313±1 to 437±2. Considering the 4He increase caused by high contents of radioactive elements, a mantle-derived fluid probably exists in the inclusions in the fluorite, calcite and bastnaesite samples. The Maoniuping deposit and its associated carbonatite-alkaline complex were formed in 40.3 to 12.2 Ma according to K-Ar and U-Pb data. All these data suggest that large quantities of mantle fluids were involved in the metallogenic process of the Maoniuping REE deposit through a fault system.  相似文献   

8.
Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He. Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic areathan do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4‰ to 1.6 ‰ and from -52.8‰ to -2.8‰, respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and near-surface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantle-derived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the  相似文献   

9.
The alternative development of coal-bearing hydrocarbon source rocks and low-porosity and low-permeability tight sandstone reservoirs of the Triassic Xujiahe Formation in the Sichuan Basin is favorable for near-source hydrocarbon accumulation. The natural gas composition of the Xujiahe Formation in the Sichuan Basin is dominated by hydrocarbon gases, of which the methane content is80.16%-98.67%. Typically, the C_2~+ content is larger than 5% in main wet gas. The dry gas is mainly distributed in the western and northern regions of the basin. The non-hydrocarbon gases mainly contain nitrogen, carbon dioxide, hydrogen, and helium, with a total content of 2%. The carbon isotope ranges of methane and its homologues in natural gas are: δ~(13)C_1 of-43.8‰ to-29.6‰, δ~(13)C_2 of-35.4‰ to-21.5‰, δ~(13)C_3 of-27.6‰ to-19.8‰,and δ~(13)C_4 of-27.7‰ to-18.8‰. δ~(13)C_3δ~(13)C_4 occurs in some natural gas with a low evolution degree; such gas is mainly coal-related gas from humic-type source rocks of the Xujiahe Formation. As for the natural gas, δ~2 H_(CH4) values ranged from-195‰ to-161‰,δ~2 H_(C2H6) values ranged from-154‰ to-120‰, and δ~2 H_(C3H8) values ranged from-151‰ to-108‰. The dry coefficient,δ~(13)C and δ~2 H_(CH4) are all positively correlated with the maturity of source rocks. The higher the maturity of source rocks is, the larger the natural gas dry coefficient is and the larger the δ~(13)C and δ~2 H_(CH_4) values are, indicative of the characteristic of near-source accumulation. The δ~2 H_(C2H6) value of natural gas is influenced by paleosalinity to a relatively large extent; the higher the paleosalinity is, the larger the δ~2 H_(C2H6) value is. The Pr/Ph value of the condensate oil ranged from 1.60 to 3.43, illustrating light oxidization-light reduction and partial-oxidization characteristics of the depositional environment of coal-bearing source rocks of the Xujiahe Formation. The natural gas light hydrocarbon(C_5-C_7) from the Xujiahe Formation presented two characteristics: the first was the relatively high aromatic hydrocarbon content(19%-32.1%), which reveals the characteristic of natural gas with humic substances of high-maturity; the second was the low content of aromatic hydrocarbon(0.4%-9.3%),reflecting water-washing during the accumulation of the natural gas. The reported research outcomes indicate a potential mechanism for natural gas accumulation in the Xujiahe Formation, which will further guide natural gas exploration in this region.  相似文献   

10.
We report here for the first time geochemical, mineralogical and stable carbon and oxygen isotopic data on the crystalline basement rocks of the 1993 Killari earthquake region of Maharashtra (India), which is covered by a thick suite of Deccan volcanics. Our results revealed the hitherto unknown amphibolite–granulite nature of the 2.5?Ga basement, which contains 2.00–2.28?wt% of CO2. The stable carbon (δ13C) and oxygen (δ18O) isotopic measurements on carbonates separated from two basement samples KIL-13 (440.5?m depth) and KIL-20 (499.6?m depth) collected from the KLR-1 borehole drilled in the epicentral region showed the respective values of ?6.23 and ?6.22‰ versus PDB for δ13C and 7.94 and 8.11‰ versus SMOW for δ18O. The samples plot in the primary igneous carbonatite field, indicating the mantle origin of the carbonates, derived through the process of mantle metasomatism from the deep mantle carbon reservoir. This would suggest large-scale crust-mantle thermal fluid interaction beneath the Killari seismogenic region, which is characterized by massive upwarping of the high-velocity mafic crust and retrograde metamorphism.  相似文献   

11.
The Tiegelongnan Cu (Au) deposit is the largest copper deposit newly discovered in the Bangong–Nujiang metallogenic belt. The deposit has a clear alteration zoning consisting of, from core to margin, potassic to propylitic, superimposed by phyllic and advanced argillic alteration. The shallow part of the deposit consists of a high sulphidation‐state overprint, mainly comprising disseminated pyrite and Cu–S minerals such as bornite, covellite, digenite, and enargite. At depth porphyry‐type mineralization mainly comprises disseminated chalcopyrite, bornite, pyrite, and a minor vein molybdenite. Mineralization is disseminated and associated with veins contained within the porphyry intrusions and their surrounding rocks. The zircon U–Pb ages of the mineralized diorite porphyry and granodiorite porphyry are 123.1 ± 1.7 Ma (2σ) and 121.5 ± 1.5 Ma (2σ), respectively. The molybdenite Re–Os age is 121.2 ± 1.2 Ma, suggesting that mineralization was closely associated with magmatism. Andesite lava (zircon U–Pb age of 111.7 ± 1.6 Ma, 2σ) overlies the ore‐bodies and is the product of post‐mineralization volcanic activity that played a critical role in preserving the ore‐bodies. Values of ?4.6 ‰ to + 0.8 ‰ δ34S for the metal sulfides (mean ? 1.55 ‰) suggest that S mainly has a deep magmatic source. The H and O isotopic composition is (δD = ?87 ‰ to ?64 ‰; δ18OH2O = 5.5 ‰ to 9.0 ‰), indicating that the ore‐forming fluids are mostly magmatic‐hydrothermal, possibly mixed with a small amount of meteoric water. The zircon εHf(t) of the diorite porphyry is 3.7 to 8.3, and the granodiorite porphyry is 1.8 to 7.5. Molybdenite has a high Re from 382.2 × 10?6 to 1600 × 10?6. Re and Hf isotope composition show that Tiegelongnan has some mantle source, maybe the juvenile lower crust from crust–mantle mixed source. Metallogenesis of the Tiegelongnan giant porphyry system was associated with intermediate to acidic magma in the Early Cretaceous (~120 Ma). The magma provenance of the Tiegelongnan deposit has some mantle‐derived composition, possibly mixed with the crust‐derived materials.  相似文献   

12.
The Deccan Syneclise is considered to have significant hydrocarbon potential.However,significant hydrocarbon discoveries,particularly for Mesozoic sequences,have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks.In this study,near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area.Soil samples were collected from favorable areas identified by integrated geophysical studies.The compositional and isotopic signatures of adsorbed gaseous hydrocarbons(methane through butane) were used as surface indicators of petroleum micro-seepages.An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons(C1-C4) and their carbon isotopes from the western part of Tapti graben,Deccan Syneclise,India.The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases.High concentrations of adsorbed thermogenic methane(C_1 = 518 ppb) and ethane plus higher hydrocarbons(ΣC_(2+) = 977 ppb) were observed.Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents.This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks,beneath Deccan Traps.The carbon isotopic composition of methane,ethane and propane ranges are from-22.5‰ to-30.2‰ PDB,-18.0‰to 27.1‰ PDB and 16.9‰-32.1‰ PDB respectively,which are in thermogenic source.Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks.Prominent hydrocarbon concentrations were associated with dykes,lineaments and presented on thinner basaltic cover in the study area,which probably acts as channel for the micro-seepage of hydrocarbons.  相似文献   

13.
The Early Cretaceous Shihu gold deposit is located in the northern segment of the Taihang Tectonic belt, which extends across the central part of the North China Craton. The deposit is hosted predominantly by the Archean metamorphic crystalline units, and is spatially and temporally related to quartz diorite porphyry present extensively throughout the gold deposit. We studied the geology, geochronology and stable isotopic geochemistry. Zircon U–Pb LA–ICP–MS ages of the quartz diorite porphyry at deposit range from 134 ± 1 to 131 ± 2 Ma, which are coeval and probably genetically related to the mineralization. The majority of the sulfides of the gold deposit have δ34S values ranging from ?1 to 2‰, which suggest an homogeneous magmatic source. In addition, the isotopic compositions of δ18Ofluid and δ18Dfluid vary from 2.1 to 7.0‰ and ?93 to ?65‰, respectively, suggesting that the magmatic fluids mingled with meteoric water. The Pb isotopic analyses reveal that both the ore‐forming materials and the quartz diorite porphyry originated from the lower crust and may have been mixed with mantle material. The 87Sr/86Sri and 143Nd/144Nd (143Nd/144Nd)i ratios for the quartz diorite porphyry demonstrate that there was mixing of two end‐member (crust and the mantle) isotopic compositions. These results suggest that the ore‐forming fluids and materials were derived from lower‐crustal melting induced by mantle processes. Processes associated with the formation of the Shihu gold deposit differ significantly from those that characterize orogenic gold deposits, and instead are representative of formation in an intracontinental tectonic environment.  相似文献   

14.
The recent deep prospecting results in the Jiaojia area of Eastern Shandong Province indicate that the Jiaojia ore field composed of several individual gold deposits as previously suggested is actually an ultra-large gold deposit. This deposit covers an area of ~40 km2, and shows a structural control by the Jiaojia fault and its secondary faults. Gold orebodies generally occur along the same mineralization-alteration belt, and the main orebodies intersect with each other or exhibit a parallel or overlapping distribution. This deposit's reserves are estimated to be 1, 200t of gold, being the first gold deposit of more than 1000t gold reserves in China. The No. I-1 orebody in the Shaling-deep Sizhuang ore blocks holds gold reserves greater than 350 t, or 29 percent of the total reserves, followed by the No. I orebody in Matang-Jiaojia ore blocks with exceeding 150t gold reserves. This deposit mainly occurs in the footwall of the Jiaojia fault, and presents zoned patterns in mineralization, alteration and structures. The strongly mineralized zones agree with strongly altered and tectonically fractured zones. These orebodies display strataform-like, veinlike or lenticular shapes, and generally show characteristics of pinching out and reappearing, branching and converging, expanding and shrinking. The orebodies commonly occur along positions where the fault strike changes and in gentle locations with dips changing from steep to gentle. The main orebodies are parallel to the main plane of the orecontrolling fault, and tend to be gentle from the surface to the deep. The orebodies mainly plunge to the southwest, with plunge angle of 45°–60°. Orebodies near the main plane of the ore-controlling fault have more gold resource than those away from main fault zone. The slant depth of orebodies is generally larger than the length along its strike direction; orebodies become thick and gold grades become low from the shallow area to the deep area. Ore-forming fluids are H2O-CO2-NaCl±CH4 type with medium-temperature and moderate to low salinity. Sulfur isotopic values(δ34SCDT) for gold ores range between 11.08‰ and 12.58‰, indicating mixed sulfur sources; hydrogen isotopic values(δDVSMOW) range from-83.68‰ to-116.95‰ and oxygen isotopic values(δ18OV-SMOW) range between 12.04‰ and 16.28‰. The hydrogen and oxygen isotopes suggest that ore-forming fluids originated from primary magma, and mixing with a large amount of atmospheric water during the late stage. The Eastern Shandong Province gold deposits are associated with magmatic activities which have mantlecrust-mixed source, and also share some similarities with orgenic and epithermal hydrothermal gold deposits. Because Eastern Shandong Province gold deposits with unique metallogenic features and formation setting which are different from other gold deposit types in the world, we call it the Jiaojiatype gold deposits. The kiloton class Jiaojia gold deposit is related to fluid activities, extension and detachment resulted from thermal upwelling of magmas. The strong magmatic activities in the middle to late stage of early Cretaceous in Eastern Shandong Province lead to active fluids, and provided abundant ore-forming materials for gold depsoits. Moreover, many extensional structures resulting from crustal extension provided favourable space for orebody positioning.  相似文献   

15.
The Madi rare metal granite is a complex massif, which contains a variety of rare metals, such as Nb, Ta, Li, and Be. In this paper, the geochemical characteristics of the granite were obtained by multi-collector inductively coupled mass spectrometry (MC-ICP-MS). The precise crystalline age of the granite was obtained from monazite U-Pb dating, and the source of the granite was determined using Li-Nd isotopes. The Madi rare metal granite is a high-K (calc-alkaline), peraluminous, S-type granite. The U-Pb monazite age indicates that the crystalline age of the granite is 175.6 Ma, which is Early Jurassic. The granite is characterized by a relatively wide range of δ7Li values (+2.99‰ to +5.83‰) and high lithium concentrations (181 ppm to 1022 ppm). The lithium isotopic composition of the granite does not significantly correlate with the degree of magmatic differentiation. An insignificant amount of lithium isotope fractionation occurred during the granitic differentiation. The lithium isotopic composition of the granite significantly differs from that of the wall rock, but it is very similar to that of a primitive mantle peridotite xenolith (mean δ7Li value +3.5‰). The plot of Li concentration versus δ7Li indicates that the Li isotopic composition of the granite is similar to that of island arc lavas. Based on the above-described evidence, the granite was mainly derived from the crust, but it was contaminated by a deep granitic magma.  相似文献   

16.
He-Ar isotopic compositions of fluid inclusions trapped in pyrites from some representative PGE-polymetallic deposits in Lower Cambrian black rock series in South China were analyzed by using an inert gas isotopic mass spectrometer. The results show that the ore-forming fluids possess a low 3He/4He ratio, varying from 0.43×10-8 to 26.39×10-8, with corresponding R/Ra value of 0.003-0.189. The 40Ar/36Ar ratios are 258-287, close to those of air saturated water (ASW). He-Ar isotopic indicator studies show that the ore-forming fluids were mainly derived from the formation water or basinal hot brine and sea water, while the content of mantle-derived fluid or deep-derived magmatic water might be negligible. The PGE-polymetallic mineralization might be related to the evolution of the Caledonian miogeosynclines distributed along the southern margin of the Yangtze Craton. During the Early Cambrian, the formation water or basinal hot brine trapped in Caledonian basins which accumulated giant thick sediments was  相似文献   

17.
《Resource Geology》2018,68(3):303-325
The Lujing uranium deposit, located in the southeastern part of the Nanling metallogenic province, is one of the representative granite‐related hydrothermal uranium deposits in South China. Basic geology, geochemistry, and geochronology of the deposit have been extensively studied. However, there is still a chronic lack of systematic research on the genesis and metallogenic process of the deposit. Thus, we recently carried out an electron microprobe and stable isotopic analysis. The main research results and progresses are as follows: Uranium minerals in this deposit include coffinite, pitchblende, and uranothorite, and small amounts of uranium exist in accessory minerals in the form of isomorphism. Coffinite, which occurs predominantly as the pseudomorphs after pitchblende, also occurs as a primary mineral and is locally formed from the remobilization of uranium from adjacent uranium‐bearing minerals. The mineralizing fluid was originally composed of a magmatic fluid generated by late Yanshanian magmatism. The high As content of pyrite in ores may reflect the addition of meteoric water, or the formation water (or both), to the magmatic hydrothermal system. The δ34S values vary from −14.4‰ to 13.9‰ (mean δ34S = −3.9‰), showing a range that is similar to nearby Cambrian metamorphic strata and Indosinian granites, indicating that these host rocks represent the source of sulfur; however, the possibility of a mantle source cannot be completely ruled out. According to our new isotopic data and recent Pb isotopic data, we conclude that the uranium in ores was derived by leaching dominantly from the uranium‐rich host rocks, especially the Cambrian metamorphic strata. The δ13CPDB values (−8.75‰ to 1.40‰; mean δ13CPDB = −5.41‰) and δ18OSMOW values (5.45–18.62‰; mean δ18O = 13.02‰) of reddish calcite from the ore‐forming stage suggest that the CO2 in the mineralizing fluids was derived predominantly from the mantle, with a small component contributed by marine carbonates. Based on these new data and previous research results, this paper proposes that uranium metallogenesis in the Lujing deposit is closely associated with mafic magmatism resulting from crustal extension during the Cretaceous to Paleogene in South China.  相似文献   

18.
A study was carried out to test the usefulness of surface geochemical methods as regional evaluation tools in petroliferous region of the Mehsana block, North Cambay Basin. A suite of 135 soil samples collected from the depth of 2.5 m, were analyzed for adsorbed light gaseous hydrocarbons and carbon isotopes (δ13Cmethane and δ13Cethane). The light gaseous hydrocarbon analysis show that the concentration ranges 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb of C1, C2, C3, iC4 and nC4, respectively. The value of carbon isotopic ranges of methane −29.5 to −43.0‰ (PDB) and ethane −19.1 to −20.9‰ (PDB). This data, when mapped, indicates patterns coinciding with major known oil and/or gas field of Sobhasan/Linch in this study area. The existence of un-altered petroliferous microseeps of catagenetic origin is observed in the study area. A regional study, such as the one described here, can provide important exploration facts concerning the regional hydrocarbon potential in a block. This method has been confirmed and can be applied successfully in frontier basins.  相似文献   

19.
The petroliferous central Junggar Basin in northwest China is predominantly an oil exploration region. However, its gas exploration also might have good prospects. Thus to assist in gas exploration, the geochemistry and origins of gases are discussed in this paper based on relatively comprehensive analyses of compositions, carbon isotopes and light hydrocarbons of gases. Based on the results, the gas genetic types are grouped into families and combined with the geological setting (e.g., biomarkers of retrograde condensates and source rock characteristics). We show that there are four representative genetic types of gases. The first consists of gases derived from Permian lacustrine mudstones with type I–II kerogen and type III kerogen sources in the Penyijingxi sag. Their representative geochemical feature is δ13C2 ranging from −31.4‰ to −24.7‰. The second is gas sourced from Carboniferous tufaceous mudstones of type III kerogen in the Dishuiquan sag, whose representative geochemical feature is the heaviest values of δ13C1 in the studied samples, ranging from −32.0‰ to −30.4‰. The third consists of gases sourced from Jurassic coals and mudstones in the Shawan–Fukang sag. The light hydrocarbon fingerprints of these gases are similar to those of gases and oils typically derived from Jurassic source rocks in the southern Junggar Basin. The fourth is gas most likely generated from the degradation of crude oil. It is mainly found in the Luliang area and has dryness values as much as 0.999 and δ13C1 ranging from −54.8‰ to −43.2‰. Among these four types of gases, the first (mainly sourced from the Permian lacustrine mudstones in the Penyijingxi sag) is the predominant type.  相似文献   

20.
Natural gas exploration in Nanpu sag, Bohai Bay Basin, has achieved breakthroughs in recent years, and a number of natural gas and condensate wells with high yield have been found in several structures in the beach area. Daily gas production of single wells is up to 170,000 m3, and high-yield wells are mainly distributed in?the Nanpu No. 1 structural belt.?Studies have shown that these natural gases are mainly hydrocarbon gases, with methane content about 80% to 90% and ethane 6%-9%, so they are mainly wet gas; and non-hydrocarbons are at a low level.?Carbon isotopes of methane range from -42‰ to -36‰, and ethane from -28‰ to -26‰. Calculated maturity based on the relationship between δ13C and Ro of natural gas, the gases are equivalent to those generated from organic matter when Ro is 1.0%-1.7% (mainly 1.25%-1.32%). The natural gas is oil-type gas generated from the source rocks at mature to high mature stage, associated with condensate, so carbon isotopes of the gases are heavier. Natural gas in the Nanpu No.1 structural belt is mainly associated gas with condensate. The analysis of the origin and source of natural gas and condensate, combined with the monomer hydrocarbon carbon isotopes and biomarker, indicated that the main source rocks in the Nanpu No.1 structural belt were Es3 (the lower member of the Shahejie Formation), followed by Es1 (the upper member of the Shahejie Formation).?The high-mature hydrocarbons from source rocks in the deep sag mainly migrated through deep inherited faults into shallow traps and accumulated to form oil and gas pools. Therefore, there is a great potential for exploring gas in deep layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号