首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nidar ophiolite complex is exposed within the Indus suture zone in eastern Ladakh, India. The suture zone is considered to represent remnant Neo-Tethyan Ocean that closed via subduction as the Indian plate moved northward with respect to the Asian plate. The two plates ultimately collided during the Middle Eocene. The Nidar ophiolite complex comprises a sequence of ultra-mafic rocks at the base, gabbroic rocks in the middle and volcano-sedimentary assemblage on the top. Earlier studies considered the Nidar ophiolite complex to represent an oceanic floor sequence based on lithological assemblage. However, present study, based on new mineral and whole rock geochemical and isotopic data (on bulk rocks and mineral separates) indicate their generation and emplacement in an intra-oceanic subduction environment. The plutonic and volcanic rocks have nearly flat to slightly depleted rare earth element (REE) patterns. The gabbroic rocks, in particular, show strong positive Sr and Eu anomalies in their REE and spidergram patterns, probably indicating plagioclase accumulation. Depletion in high field strength elements (HFSE) in the spidergram patterns may be related to stabilization of phases retaining the HFSE in the subducting slab and / or fractional crystallization of titano-magnetite phases. The high radiogenic Nd- and low radiogenic Sr-isotopic ratios for these rocks exclude any influence of continental material in their genesis, implying an intra-oceanic environment.

Nine point mineral–whole rock Sm–Nd isochron corresponds to an age of 140 ± 32 Ma with an initial 143Nd/144Nd of 0.513835 ± 0.000053 (ENd t = + 7.4). This age is consistent with the precise Early Cretaceous age of Hauterivian (132 ± 2 to 127 ± 1.6 Ma) to Aptian (121 ± 1.4 to 112 ±1.1 Ma) for the overlying volcano-sedimentary (radiolarian bearing chert) sequences based on well-preserved radiolarian fossils (Kojima, S., Ahmad, T., Tanaka, T., Bagati, T.N., Mishra, M., Kumar, R. Islam, R., Khanna, P.P., 2001. Early Cretaceous radiolarians from the Indus suture zone, Ladakh, northern India. In: News of Osaka Micropaleontologists (NOM), Spec. Vol., 12, 257–270.) and cooling ages of 110–130 Ma based on 39Ar/40Ar for Nidar–Spontang ophiolitic rocks (Mahéo, G., Berttrand, H., Guillot, S., Villa, I. M., Keller, F., Capiez, P., 2004. The South Ladakh Ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implications for the closure of the Neo-Tethys. Chem. Geol., 203, 273–303.). As these gabbroic and volcanic rocks are interpreted to be arc related, the new Sm–Nd age data may indicate that intra-ocean subduction in the Neo-Tethyan ocean may have started much before  140 ± 32 Ma as this date is interpreted as the age of crystallization of the arc magma. Present and published age data on the arc magmatic rocks from the Indus suture zone may collectively indicate episodic magmatism with increasing maturity of the arc from more basic (during ~ 140 ± 32 Ma) when the arc was immature through intermediate (andesitic/granodioritic) at ~ 100 Ma to more felsic (rhyolitic/dioritic) magmatism at ~ 50–45 Ma, when the Indian and the Asian plates collided.  相似文献   


2.
Silurian plutonic suites in the Newfoundland Appalachians include abundant gabbro, monzogabbro and granite to granodiorite and lesser quartz diorite and tonalite. Most are medium- to high-K, but included are some low-K and shoshonitic mafic compositions. Felsic rocks are of both alkaline (A-type or within-plate granite (WPG)) and calc-alkaline volcanic arc granite (VAG) affinity. Mafic rocks include both arc-like (Nb/Th < 3) calc-alkaline and non-arc-like (Nb/Th > 3) transitional calc-alkaline basalt to continental tholeiitic affinity compositions. εNd(T) values range from − 9.6 to + 5.4 and δ18O (VSMOW) values range from + 3.1 to + 13.2‰.

A rapid progression from exclusively arc-type to non-arc-like mafic and then contemporaneous WPG plus VAG magmatism has been documented using precise U–Pb zircon dating. Earlier arc-like plutonism indicates subduction, while asthenosphere-derived mafic magmas support slab break-off, due to subduction of a young, warm back-arc basin. Contemporaneous mafic magmas with arc and non-arc geochemical signatures may reflect tapping of asthenospheric and subcontinental lithospheric mantle (SCLM) sources and/or contamination of asthenosphere-derived magmas by SCLM or crust.

The brevity (< 5 Ma) of the mafic magmatic pulse agrees with the transient nature of magmatism associated with slab break-off. The subsequent ca. 1 to 2 m.y. period of voluminous WPG and VAG plutonism likely reflects mafic magma-driven partial melting of both SCLM and crustal sources, respectively. Continuation of VAG-like magmatism for an additional 2 to 5 m.y. may reflect lower solidus temperatures of crustal materials, enabling anatexis to continue after mantle melting ceased. East to west spatial variation of εNd and (La/Yb)CN in Silurian plutons suggests a transition from shallow melting of juvenile sources proximal to the collision zone to deeper melting of old source materials in the garnet-stability field further inboard.

Previous work has demonstrated that geochemical discriminaton of post-collisional granitoid magmatism (PCGM) is difficult in the absence of other constraints. Our example should contribute to the understanding and identification of PCGM if it can be employed as a ‘fingerprint’ for slab break-off-related PCGM within the Paleozoic geological record.  相似文献   


3.
This review considers the magmatic processes in the Carpathian–Pannonian Region (CPR) from Early Miocene to Recent times, as well as the contemporaneous magmatism at its southern boundary in the Dinaride and Balkans regions. This geodynamic system was controlled by the Cretaceous to Neogene subduction and collision of Africa with Eurasia, especially by Adria that generated the Alps to the north, the Dinaride–Hellenide belt to the east and caused extrusion, collision and inversion tectonics in the CPR. This long-lived subduction system supplied the mantle lithosphere with various subduction components. The CPR contains magmatic rocks of highly diverse compositions (calc-alkaline, K-alkalic, ultrapotassic and Na-alkalic), all generated in response to complex post-collisional tectonic processes. These processes formed extensional basins in response to an interplay of compression and extension within two microplates: ALCAPA and Tisza–Dacia. Competition between the different tectonic processes at both local and regional scales caused variations in the associated magmatism, mainly as a result of extension and differences in the rheological properties and composition of the lithosphere. Extension led to disintegration of the microplates that finally developed into two basin systems: the Pannonian and Transylvanian basins. The southern border of the CPR is edged by the Adria microplate via Sava and Vardar zones that acted as regional transcurrent tectonic areas during Miocene–Recent times.Major, trace element and isotopic data of post-Early Miocene magmatic rocks from the CPR suggest that subduction components were preserved in the lithospheric mantle after the Cretaceous–Miocene subduction and were reactivated especially by extensional tectonic processes that allowed uprise of the asthenosphere. Changes in the composition of the mantle through time support geodynamic scenarios of post-collision and extension processes linked to the evolution of the main blocks and their boundary relations. Weak lithospheric blocks (i.e. ALCAPA and western Tisza) generated the Pannonian basin and the adjacent Styrian, Transdanubian and Z?rand basins which show high rates of vertical movement accompanied by a range of magmatic compositions. Strong lithospheric blocks (i.e. Dacia) were only marginally deformed, where strike–slip faulting was associated with magmatism and extension. At the boundary of Adria and Tisza–Dacia strike–slip tectonics and core complex extension were associated with small volume Miocene magmatism in narrow extensional sedimentary basins or granitoids in core-complex detachment systems along older suture zones (Sava and Vardar) accommodating the extension in the Pannonian basin and afterward Pliocene–Quaternary inversion. Magmas of various compositions appear to have acted as lubricants in a range of tectonic processes.  相似文献   

4.
Eocene to late Miocene magmatism in the central Peruvian high-plain (approx. between Cerro de Pasco and Huancayo; Lats. 10.2–12°S) and east of the Cordillera Occidental is represented by scattered shallow-level intrusions as well as subaerial domes and volcanic deposits. These igneous rocks are calc-alkalic and range from basalt to rhyolite in composition, and many of them are spatially, temporally and, by inference, genetically associated with varied styles of major polymetallic mineralization. Forty-four new 40Ar–39Ar and three U/Pb zircon dates are presented, many for previously undated intrusions. Our new time constraints together with data from the literature now cover most of the Cenozoic igneous rocks of this Andean segment and provide foundation for geodynamic and metallogenetic research.The oldest Cenozoic bodies are of Eocene age and include dacitic domes to the west of Cerro de Pasco with ages ranging from 38.5 to 33.5 Ma. South of the Domo de Yauli structural dome, Eocene igneous rocks occur some 15 km east of the Cordillera Occidental and include a 39.34 ± 0.28 Ma granodioritic intrusion and a 40.14 ± 0.61 Ma rhyolite sill, whereas several diorite stocks were emplaced between 36 and 33 Ma. Eocene mineralization is restricted to the Quicay high-sulfidation epithermal deposit some 10 km to the west of Cerro de Pasco.Igneous activity in the earliest Oligocene was concentrated up to 70 km east of the Cordillera Occidental and is represented by a number of granodioritic intrusions in the Milpo–Atacocha area. Relatively voluminous early Oligocene dacitic to andesitic volcanism gave rise to the Astabamba Formation to the southeast of Domo de Yauli. Some stocks at Milpo and Atacocha generated important Zn–Pb (–Ag) skarn mineralization. After about 29.3 Ma, magmatism ceased throughout the study region. Late Oligocene igneous activity was restricted to andesitic and dacitic volcanic deposits and intrusions around Uchucchacua (approx. 25 Ma) and felsic rocks west of Tarma (21–20 Ma). A relationship between the Oligocene intrusions and polymetallic mineralization at Uchucchacua is possible, but evidence remains inconclusive.Widespread magmatism resumed in the middle Miocene and includes large igneous complexes in the Cordillera Occidental to the south of Domo de Yauli, and smaller scattered intrusive centers to the north thereof. Ore deposits of modest size are widely associated with middle Miocene intrusions along the Cordillera Occidental, north of Domo de Yauli. However, small volcanic centers were also active up to 50 km east of the continental divide and include dacitic dikes and domes, spatially associated with major base and precious metal mineralization at Cerro de Pasco and Colquijirca. Basaltic volcanism (14.54 ± 0.49 Ma) is locally observed in the back-arc domain south of Domo de Yauli approximately 30 km east of the Cordillera Occidental.After about 10 Ma intrusive activity decreased throughout Central Perú and ceased between 6 and 5 Ma. Late Miocene magmatism was locally related to important mineralization including San Cristobal (Domo de Yauli), Huarón and Yauricocha.Overall, there is no evidence for a systematic eastward migration of the magmatic arc through time. The arc broadened in the late Eocene to early Oligocene, and thereafter ceased over wide areas until the early Miocene, when magmatism resumed in a narrow arc. A renewed widening and subsequent cessation of the arc occurred in the late middle and late Miocene. The pattern of magmatism probably reflects two cycles of flattening of the subduction in the Oligocene and late Miocene. Contrasting crustal architecture between areas south and north of Domo de Yauli probably account for the differences in the temporal and aerial distribution of magmatism in these areas.Ore deposits are most abundant between Domo de Yauli and Cerro de Pasco and were generally emplaced in the middle and late Miocene during the transition to flat subduction and prior to cessation of the arc. Eocene to early Oligocene mineralization also occurred, but was restricted to a broad east–west corridor from Uchucchacua to Milpo–Atacocha, indicating a major upper-plate metallogenetic control.  相似文献   

5.
A dense nationwide seismic network recently constructed in Japan has resulted in the production of a large amount of high-quality data that have enabled the high-resolution imaging of deep seismic structures in the Japanese subduction zone. Seismic tomography, precise locations of earthquakes, and focal mechanism research have allowed the identification of the complex structure of subducting slabs beneath Japan, revealing that the subducting Philippine Sea slab underneath southwestern Japan has an undulatory configuration down to a depth of 60–200 km, and is continuous from Kanto to Kyushu without disruption or splitting, even within areas north of the Izu Peninsula. Analysis of the geometry of the Pacific and Philippine Sea slabs identified a broad contact zone beneath the Kanto Plain that causes anomalously deep interplate and intraslab earthquake activity. Seismic tomographic inversions using both teleseismic and local events provide a clear image of the deep aseismic portion of the Philippine Sea slab beneath the Japan Sea north of Chugoku and Kyushu, and beneath the East China Sea west of Kyushu down to a depth of ∼450 km. Seismic tomography also allowed the identification of an inclined sheet-like seismic low-velocity zone in the mantle wedge beneath Tohoku. A recent seismic tomography work further revealed clear images of similar inclined low-velocity zones in the mantle wedge for almost all other areas of Japan. The presence of the inclined low-velocity zones in the mantle wedge across the entirety of Japan suggests that it is a common feature to all subduction zones. These low-velocity zones may correspond to the upwelling flow portion of subduction-induced convection systems. These upwelling flows reach the Moho directly beneath active volcanic areas, suggesting a link between volcanism and upwelling.  相似文献   

6.
Detachment of the deeper part of subducted lithosphere causes changes in a subduction zone system which may be observed on the Earth's surface. Constraints on the expected magnitudes of these surface effects can aid in the interpretation of geological observations near convergent plate margins where detachment is expected. In this study, we quantify surface deformation caused by detachment of subducted lithosphere. We determine the range of displacement magnitudes which can be associated with slab detachment using numerical models. The lithospheric plates in our models have an effective elastic thickness, which provides an upper bound for rapid processes, like slab detachment, to the surface deformation of lithosphere with a more realistic rheology. The surface topography which develops during subduction is compared with the topography shortly after detachment is imposed. Subduction with a non-migrating trench system followed by detachment leads to a maximum surface uplift of 2–6 km, while this may be higher for the case of roll-back preceding detachment. In the latter situation, the back-arc basin may experience a phase of compression after detachment. Within the context of our elastic model, the surface uplift resulting from slab detachment is sensitive to the depth of detachment, a change in friction on the subduction fault during detachment and viscous stresses generated by sinking of the detached part of the slab. Overall, surface uplift of these magnitudes is not diagnostic of slab detachment since variations during ongoing subduction may result in similar vertical surface displacements.  相似文献   

7.
The Hercynian Köse composite pluton (KCP) is located in the Eastern Pontides, Turkey, and consists of two units of high-K calc-alkaline, primarily peraluminous granites: (i) the internal body, and (ii) the external body. The internal body, which was emplaced at 322–318 Ma (40Ar/39Ar ages on biotite and hornblende, respectively), displays a wide compositional range (49–71 wt.% SiO2) and contains several lithologies: hybrid equigranular rocks, microgranular magmatic enclaves, mafic dikes, porphyry dikes and mylonites. The external body, which was emplaced at 306.7 Ma (40Ar/39Ar age on K-feldspar), consists exclusively of monzogranite (> 71 wt.% SiO2). Field relationships, mineralogy, major- and trace element geochemistry, and initial Sr–Nd isotope values (ISr = 0.70821 to 0.71002, eNd(t) = ?6.6 to ?8.0) show that the internal body was differentiated and evolved by crystal fractionation and magma mixing processes. The end-members of the mixing process were a mafic rock and a felsic rock. Mafic magma was derived from a relatively deep-seated (25–30 km) crustal storage reservoir, not directly from the mantle, and underwent significant differentiation by fractional crystallization and crustal contamination before mixing. In addition, these magma storages probably supplied the additional heat necessary to initiate crustal melting. Some of the additional heat may have also been released by the radiogenic decay of heat producing elements. Eventually, the existing felsic magma from the melting of K-bearing meta-greywackes was raised to its emplacement level at a depth of ~ 10–16 km. After partial crystallization, it was sporadically intruded by modified mafic magma from the deeper crustal reservoir to generate hybrid rocks. The hybrid rocks were then elevated to a shallower depth by normal faults during the collapse of the orogen and erosion. Mylonites that were later overprinted by pseudotachylites are typically constrained to the internal body and are regarded as markers of this event. The external body is characterized by a significantly less radiogenic and limited range of Sr–Nd isotope values (ISr = 0.70639 to 0. 70792, eNd(t) = ?4.4 to ?6.5) than those of the internal body and a lack of rocks documenting the open system differentiation processes. Fractional crystallization is the exclusive process responsible for the elemental range within the body. The rocks also contain less biotite relative to those of the internal body. All these involve less K-bearing mid-crustal rocks (orthogneisses) in their source, which was probably located at depths near the lower crust. The absence of purely lower crustal-derived melts can be explained by the removal of this type of material during the formation of the parental melt. This melt later ascended to its emplacement level at a depth of around ~ 5–10 km and cut the hybrid rocks of the internal body and regional metamorphic rocks that had been raised previously due to ongoing erosion. The melt that injected into the cracks of the internal body crystallized into porphyries because there was not enough time for the entire crystallization of magma. The data presented here indicate that late Early Carboniferous and Late Carboniferous magmatism occurred in a collisional setting. Slab detachment and subsequent delamination seem to be the most plausible mechanisms for the generation of the Hercynian high-K calc-alkaline magmatism in the Eastern Pontides, Turkey.  相似文献   

8.
The Inner Carpathians comprise several distinct Neogene late-stage orogenic Pb–Zn–Cu–Ag–Au ore districts. The mineral deposits in these districts are closely related to volcanic and subvolcanic rocks, and represent mainly porphyry and epithermal vein deposits, which formed within short periods of time in each district. Here, we discuss possible geodynamic and structural controls that suggest why some of the Neogene volcanic districts within the Carpathians comprise abundant mineralization, while others are barren. The Neogene period has been characterized by an overall geodynamic regime of subduction, where primary roll-back of the subducted slab and secondary phenomena, like slab break-off and the development of slab windows, could have contributed to the evolution, location and type of volcanic activity. Structural features developing in the overlying lithosphere and visible in the Carpathian crust, such as transtensional wrench corridors, block rotation and relay structures due to extrusion tectonics, have probably acted in focusing hydrothermal activity. As a result of particular events in the geodynamic evolution and the development of specific structural features, mineralization formed during fluid channelling within transtensional wrench settings and during periods of extension related to block rotation.In the Slovakian ore district of the Western Carpathians, Neogene volcanism and associated mineralization were localized by sinistral, NE-trending wrench corridors, which formed part of the extruding Alcapa block. The Baia Mare ore district, in the Eastern Carpathians, reflects a transtensional wrench setting on distributed oversteps close to the termination of the Dragos Voda fault. There, mineralization was spatially controlled by the transtensional Dragos Voda master fault and associated cross-fault systems. The Golden Quadrangle Cu–Au ore district of the Southern Apuseni Mountains reflects an unusual rotated transtensional/extensional setting close to the termination of a graben system. There, fluid flow was probably localized by fault propagation at the inner tip of the graben system.The spatial and temporal evolution of the magmatism and its changing geochemical signature from (N)W to (S)E strongly suggests a link with the contemporaneous northeastward roll-back of the subducted slab and a progressive southeastward detachment during accelerating roll-back. This geodynamic evolution is further supported by the present-day overall and detailed mantle lithospheric density images, the present-day heat flow patterns, the crustal architecture and its interpreted evolution, and the spatial and temporal evolution of depocentres around the Carpathian arc. In contrast to all these features, the mineral deposits in the West Carpathians, East Carpathians and Apuseni Mountains are too synchronous with respect to their individual volcanic history and contrast too much with younger volcanics of similar style, but barren, in southeastern parts of the Carpathians to simply link them directly to the slab evolution. In all three districts, the presence of magmatic fluids released from shallow plutons and their mixing with meteoric water were critical for mineralization, requiring transtensional or extensional local regimes at the time of mineralization, possibly following initial compressional regimes.These three systems show that mineralization was probably controlled by the superposition of favourable mantle lithospheric conditions and partly independent, evolving upper crustal deformation conditions.In the 13 to 11 Ma period the dominant mineralization formed all across the Carpathians, and was superimposed on structurally favourable crustal areas with, at that time, volcanic–hydrothermal activity. The period may reflect the moment when the (upper part of the) crust failed under lithospheric extension imposed by the slab evolution. This crustal failure would have fragmented the overriding plate, possibly breaking up the thermal lid, to provoke intensive fluid flow in specific areas, and allowed subsequent accelerated tectonic development, block rotation and extrusion of a “family of sub-blocks” that are arbitrarily regarded as the Tisia–Dacia or Alcapa blocks, even though they have lost their internal entity.  相似文献   

9.
《International Geology Review》2012,54(17):2083-2099
ABSTRACT

The high Sr/Y geochemical feature of granitoids can be attributed to various mechanisms, and elucidating genesis of high Sr/Y granitoids provides insights into the material recycling and magmatic processes at depth. In southeastern Central Asian Orogenic Belt (CAOB), many Middle Permian granitoids exhibit high Sr/Y ratios, but their origins remain unclear, inhibiting a comprehensive understanding of the magmatic response to the final closure of the Palaeo-Asian ocean. Here we present new zircon U-Pb ages, Lu-Hf isotopes and whole-rock geochemical data for the Middle Permian high Sr/Y monzogranites from central Inner Mongolia, southeastern CAOB. LA-ICP-MS zircon U-Pb data shows that these high Sr/Y rocks were emplaced during 273–261 Ma. They are calc-alkaline, sodium-rich and metaluminous to weakly peraluminous, with enriched large-ion lithophile elements (Rb, Th, K and Pb) and depleted high field strength elements (Nb, Ta, P and Ti), suggesting a mafic lower crustal source rather than evolved potassic crustal materials. Their relatively low (Gd/Yb)N (1.1–2.0), (Dy/Yb)N (1.0–1.3), Nb/Ta (7.9–10.9) ratios and flat heavy rare earth element patterns are characteristics of derivation from a relatively shallow depth with amphibolite as dominant residue. They also have highly variable εHf(t) values (?8.2 to +10.0) and TDMC (1814 to 649 Ma), similar to those of the Early Palaeozoic high Sr/Y intrusions along the Bainaimiao arc belt. Combined with data from literatures, we suggest that the high Sr/Y monzogranites in this study were probably generated by reworking of the newly underplated juvenile high Sr/Y lower crust of the Bainaimiao arc belt. Moreover, taking into account the regional investigations, the sublinear distributed Middle Permian magmatic rocks in the southeastern CAOB were likely associated with the incipient slab break-off of the Palaeo-Asian oceanic lithosphere following initial collision between the North China craton and the South Mongolia terranes.  相似文献   

10.
腾冲火山区的现代幔源氦释放:构造和岩浆活动意义   总被引:3,自引:3,他引:3  
赵慈平  冉华  王云 《岩石学报》2012,28(4):1189-1204
深地震测深(DSS)和大地电磁测深(MT)都表明腾冲火山区现今仍存在壳内岩浆囊,但对其数量和空间分布还存在分歧并缺乏全貌性认识。MT探测认为腾冲火山区是一个软流圈上涌和岩石圈减薄区,但对这一减薄区的空间范围还缺乏充分的约束。通过对腾冲火山区及外围大范围温泉逸出气体的分析测试,我们共获得了75个温泉逸出气体的氦同位素3He/4He比值数据(部分为前人资料)。利用氦同位素示踪原理,我们研究了腾冲火山区幔源氦释放强度空间分布和时间变化特征,结果发现:腾冲火山区的幔源挥发份释放呈1带3区分布。以3He/4He≥1 Ra,幔源氦比例≥15%为界,腾冲火山区的幔源挥发份释放异常区呈整片分布,为一南北走向的条带,南北长100km,东西宽50km。在整片异常区的内部,腾冲火山区的幔源挥发份释放又有强度不同的3个区域:① 中部腾冲县城-热海一带,3He/4He比值达到5.5 Ra以上,幔源氦比例达到70%以上,释放强度最强。② 北部曲石一带,3He/4He比值达4.5 Ra以上,幔源氦比例达到50%以上,释放强度次之。③ 南部五合-蒲川-新华一带,3He/4He比值达2Ra以上,幔源氦比例达到25%以上,释放强度最弱;腾冲火山区幔源挥发份释放强度在不断升高,其中第3个释放区的3He/4He比值(Ra)升高速率比前两者明显要大。我们认为:腾冲火山区现今幔源挥发份释放强度的空间分布图象就是该地区软流圈上涌和岩石圈减薄区空间尺度和上涌强度的最直接反映,上涌区(减薄区)的大小大致为南北长100km,东西宽50km;腾冲火山区现今存在3个壳内岩浆囊。第1个岩浆囊位于腾冲县城-热海一带,第2个岩浆囊位于马站-曲石一带,第3个岩浆囊位于五合-龙江-团田-蒲川-新华一带;腾冲火山区3个岩浆囊都在不断受到幔源岩浆的持续补充;第1个岩浆囊集幔源挥发份释放、相对地热梯度、地壳形变和地震活动等异常于一身,活动性最强,是未来腾冲火山最可能喷发的地点,需重点监视。第2个岩浆囊的幔源挥发份释放强度也引人注目,需加强监测。第3个岩浆囊规模大,埋深较浅,幔源挥发份释放增加较快,需引起注意。  相似文献   

11.
西南天山阔克萨彦岭地区巴雷公钾长花岗岩出露于蛇绿混杂岩南侧。地球化学特征显示,该岩石富碱(K2O+Na2O为8.25~8.72%〉8%),富钾(K2O/Na2O为1.34~1.56),准铝质(A/CNK为0.94~1.05),为高钾钙碱性-钾玄岩系列;岩石富集大离子亲石元素和轻稀土,亏损Sr、P等大离子亲石元素及Nb、Ti等高场强元素,具有中等的负铕异常(δEu=0.49~0.59),为向A型花岗岩过渡的后碰撞高钾花岗岩特征;岩石的Nd/Th(1.64~3.19)、Th/U(5.95~7.11)、Nb/Ta(7.26~9.17)和高K2O/Na2O比值、低Sr/Ba比值特征表明,巴雷公花岗岩来源于中下地壳物质的部分熔融,残留相为斜长角闪岩。阴极发光图像显示,该岩石中锆石多呈完好的自形晶,具有岩浆锆石特有的韵律环带结构,LA-ICP-MS微区原位U-Pb定年结果表明该花岗岩的结晶侵位年龄为273±2Ma。综合南天山已有研究成果,推测南天山造山带后碰撞花岗质岩浆活动主要发生在282~259Ma之间,具有从高钾钙碱系列(282~266Ma)向碱性系列(266~259Ma)演化的特征,暗示了一个后碰撞阶段的造山带垮塌、陆壳连续伸展减薄的过程。巴雷公高钾花岗岩应为南天山造山带碰撞造山峰期变质后垮塌过程中的第一个阶段或碰撞造山到后造山的一个转折阶段的中下地壳熔融的产物,指示南天山西段古洋盆在中二叠世以前已经闭合,西南天山已进入后碰撞演化阶段,代表了古亚洲洋南部的闭合和中亚南部增生造山作用的结束。这一认识为深入探讨中亚后碰撞岩浆作用的时限和机制提供了新的约束资料。  相似文献   

12.
北山柳园地区分布大量的花岗岩类岩石,岩石类型有花岗闪长岩、二长花岗岩、钾长花岗岩和斑状花岗岩.锆石SHRIMP U-Pb定年分析结果为花岗闪长岩的侵位年代为423±8 Ma辉铜山以东(HT-)钾长花岗岩和二长花岗岩的侵位分别为436±9 Ma和397±7 Ma.该区花岗质岩石都具有大离子亲石元素和轻稀土元素相对富集,K、Ni、Ta、P和Ti负异常的特征,属于准铝质到过铝质的高K花岗岩.花岗闪长岩无Sr和Eu负异常的特征,εNd(t)=-2.5~-0.8,其岩浆源于岩石圈地幔或是软流圈与岩石圈地幔相混合的岩浆熔融,并受到了含有火山弧组分的年轻地壳的混染.钾长花岗岩和二长花岗岩具有Sr和Eu负异常的特征,εNd(t)值分别为+1.4、-4.0~-2.0和-2.7~-0.3.HT-钾长花岗岩岩浆主要源于由于岩石圈地幔岩浆作用而导致上覆年轻地壳物质的部分熔融;花牛山附近(HN-)钾长花岗岩岩浆主要源于软流圈地幔部分熔融,可能受到了部分年轻地壳物质的混染;二长花岗岩岩浆主要源于年轻地壳的部分熔融.柳园地区4类花岗岩类岩石都是后碰撞构造背景下的岩浆产物,岩浆形成可能与俯冲板片断离有关.  相似文献   

13.
14.
通化地区古元古代晚期花岗质岩浆作用与地壳演化   总被引:10,自引:10,他引:10  
广泛出露于华北板块东部辽吉地区的古元古代变质杂岩,多年来一直被认为是古老的陆内裂谷作用的产物,我们通过详细的野外地质调查工作发现,该变质杂岩中以往所划定的混合岩实际是不同变质程度和变形特征的岩浆成因花岗岩岩体,其岩石类型除典型的片麻状角闪正长花岗岩(俗称“条痕状花岗岩”或“辽吉花岗岩”)外,另有片麻状石英闪长岩、巨斑状黑云母二长花岗岩、巨斑状一环斑状舍石榴石花岗岩和角闪辉石正长岩等、,应用SHRIMP技术,本文对片麻状石英闪长岩和巨斑状一环斑状含石榴石花岗岩进行了结石U—Pb同位素年龄测定,结果显示它们的侵位时代为1872~1850Ma,与巨癍状黑云母二长花岗岩和角闪辉石正长杂岩侵位时代相近,岩石学一地球化学特征显示片麻状石英闪长岩是“Ⅰ”型花岗岩,具有岛弧型花岗岩地球化学特征;而巨斑状一环斑状含石榴石花岗岩(局部具有球斑状结构)属“S”型花岗岩结合区内与花岗岩形成同时发生的变质作用P—T特征,这种I-、S-和A-型花岗岩的同时产出,反映他们可能形成于造山后构造背景,结合朝鲜狼林一中国辽南和龙岗太古宙陆块的结晶基底差别,可以认定华北板块在太古宙末期并非仅由东、西部陆块组成,在东部陆块至少还存在朝鲜狼林-辽南-胶东联合陆块和龙岗-鲁西-五准陆块两个微陆块,这两个微陆块大约在1.90Ga左右发生拼合,然后它们再于1.85Ga左右与西部地块拼合  相似文献   

15.
青藏高原拉萨地块西部赛利普地区新生代火山岩依据主量元素可划分为超钾质、钾质和钙碱性系列,主要的岩石类型为粗面安山岩、粗面岩,一个超钾质岩石的40Ar-39Ar年龄为17.58Ma,指示出火山活动为中新世.超钾质、钾质和钙碱性火山岩都显示出富集LREE及LILE(Th、U)、亏损HFSE(Nb、Ta、Ti)的特征.超钾质火山岩具有较高的K2O(6.31%~8.55%)、MgO(6.75%~8.96%)、Cr(270.7×10-6~460.4×10-6)、Ni(142.3×10-6~233.9×10-6)含量,较高的(87Sr/86Sr)i(0.71883~0.72732)和较低的εNd(-14.78~-15.37),指示可能起源于一个前期亏损并经后期俯冲作用改造的富钾的方辉橄榄岩富集地幔源区.钾质火山岩具有比超钾质火山岩低的K2O、MgO、Cr、Ni含量以及高的Ba、Sr含量,初始87Sr/86Sr为0.71553~0.71628,初始143Nd/144Nd为0.51197~0.51198,在空间上与超钾质火山岩共生,可能是前者母岩浆的演化产物.钙碱性火山岩具有较高的Sr(881.7×10-6~1309.2×10-6)、Sr/Y比值(50~108)和较低的Y(12.05×10-6~18.02×10-6),明显亏损重稀土Yb(0.93×10-6~1.30×10-6),类似于典型的埃达克质岩成分特征但相对高钾,并具有相对低的(87Sr/86Sr);(0.70928~0.71374)以及高的εNd(-7.90~-10.91),指示起源于富钾增厚下地壳物质的部分熔融.区域上拉萨地块超钾质岩、钾质岩与N-S向地堑系在空间上共存、时间上相吻合,由此本文认为拉萨地块中新世钾质.超钾质岩和南北向地堑系的形成可能与中新世早期北向俯冲的印度大陆岩石圈断离有关.  相似文献   

16.
We discuss strike-slip tectonics as the key agent in the formation of the Early Paleozoic (Caledonian) collisional system of the western Baikal region. This tectonic setting implies existence of local syncompressional extension, with the ensuing conditions for mantle drainage and magmatism. Lower-middle crust collisional complexes exposed in the Olkhon area of the western Baikal region provide a record of synmetamorphic subalkaline-mafic magmatism associated with the early synorogenic collapse of the Olkhon collisional system, a part of the Central Asian collisional-accretionary belt.  相似文献   

17.
Bangong-Nujiang collisional zone(BNCZ)is an older one in Qinghai-Tibet Plateau and resulted in the famous Bangong-Nujiang metallogenic belt,which plays an important role in evaluating the formation and uplift mechanism of plateau.The northern and central Lhasa Terrane composed the southern part of the BNCZ.Since ore deposits can be used as markers of geodynamic evolution,the authors carried 1∶50000 stream sedimental geochemical exploration in the Xiongmei area in the Northern Lhasa Terrane to manifest the mineralization,and based on this mineralization with geochemical and chronological characteristics of related magmatic rocks to constrain their geodynamics and connection with the evolution of the Lhasa Terrane.The authors find Early Cretaceous magma mainly resulted in Cu,Mo mineralization,Late Cretaceous magma mainly resulted in Cu,Mo,and W mineralization in the studying area.The results suggest a southward subduction,slab rolling back and break-off,and thickened lithosphere delamination successively occurred within the Northern Lhasa Terrane.  相似文献   

18.
The Khoynarood area is located in the northwest of Iran, lying at the northwestern end of the Urumieh–Dokhtar volcano-plutonic belt and being part of the Qaradagh–South Armenia domain. The main intrusive rocks outcropped in the area have compositions ranging from monzonite–quartz monzonite, through granodiorite, to diorite–hornblende diorite, accompanied by several dikes of diorite–quartz diorite and hornblende diorite compositions, which were geochemically studied in order to provide further data and evidence for the geodynamic setting of the region. The SiO2, Al2O3 and MgO contents of these rocks are about 58.32–68.12%, 14.13–18.65% and 0.68–4.27%, respectively. They are characterized by the K2O/Na2O ratio of 0.26–0.58, Fe2O3 + MnO + MgO + TiO2 content about 4.27–13.13%, low Y (8–17 ppm) and HREE (e.g., 1–2 ppm Yb) and high Sr contents (750–1330 ppm), as well as high ratios of Ba/La (13.51–50.96), (La/Yb)N (7–22), Sr/Y (57.56–166.25), Rb/La (1.13–2.96) and La/Yb (10–33.63), which may testify to the adakitic nature of these intrusions. Their chemical composition corresponds to high-silica adakites, displaying enrichments of LREEs and LILEs and preferential depletion of HFSEs, (e.g., Ti, Ta and Nb). The REE differentiation pattern and the low HREE and Y contents might be resulted from the presence of garnet and amphibole in the solid residue of the source rock, while the high Sr content and the negative anomalies of Ti, Ta and Nb may indicate the absence of plagioclase and presence of Fe and Ti oxides in it. As a general scenario, it may be concluded that the adakitic rocks in the Khoynarood were most likely resulted from detachment of the subducting Neo-Tethyan eclogitic slab after subduction cessation between Arabian and Central Iranian plates during the upper Cretaceous–early Cenozoic and partial melting of the detached slab, followed by interactions with metasomatized mantle wedge peridotite and contamination with continental crust.  相似文献   

19.
拆沉作用(delamination)是地球科学中一个重要的科学问题。本文认为,大洋岩石圈拆沉和大陆下地壳拆沉是不一样的:(1)拆沉的物质不同。大洋岩石圈拆沉的物质包括大洋地壳、岩石圈地幔甚至一部分软流圈地幔,它们共同进入地幔深部;而大陆下地壳拆沉仅仅限制在下地壳,不包括岩石圈地幔。(2)拆沉的动力不同。大洋岩石圈拆沉是由板块俯冲引起的,是地幔对流的产物,因此是一种快速的主动的拆沉;而下地壳拆沉是由于下地壳加厚使下地壳密度增加引起的,还要求其下刚性的岩石圈地幔转变成塑性的软流圈地幔才有可能发生。因此下地壳拆沉要克服许多阻力才能实现,使拆沉成为一个漫长的过程,是慢速的和被动的拆沉。(3)拆沉的过程不同,大洋岩石圈拆沉是由板块俯冲触发的,俯冲导致碰撞,大洋岩石圈从根部断裂,拆沉进入地幔。大陆下地壳拆沉由地壳加厚开始,使下地壳转变为榴辉岩相;随后,岩石圈地幔减薄,直至全部转化为软流圈地幔;下地壳发生部分熔融,形成大规模的(埃达克质)岩浆,使下地壳榴辉岩的密度大于下伏的地幔,从而引发拆沉。大陆下地壳拆沉不大可能是整体进行的,可能是一块一块地被蚕食,被拆沉的。(4)拆沉后的效液压不同,大洋岩石圈地幔拆沉,使热的软流罪状地幔上涌,从而引发了一系列地质效应;如岩浆活动,地壳抬升,构造松弛以及随后的造山带垮塌等。而下地壳拆沉只引起地壳减薄,高原和山脉垮塌,并不伴有大规模的岩浆活动和地壳抬升等过程。(5)拆沉与岩浆活动的关系不同,主动拆沉导致大规模岩浆活动,而被拆沉是在大规模岩浆活动的基础上开始的。此外,文中还对“下地壳+岩石圈地幔拆沉”模式提出了质疑,认为该模式有许多难以理解的问题和太多推测的成分,而且与现在保存的地质事实不符。  相似文献   

20.

单竹坪矿床位于福建省上杭县紫金山矿田的西南部, 形成了Au、Cu和Mo异常, 其中Au、Cu富集成矿。选取单竹坪矿床钻孔岩芯中二长花岗岩和花岗闪长岩作为研究对象, 开展岩石学、岩相学、全岩地球化学、锆石U-Pb年代学和Lu-Hf同位素研究。研究结果表明, 二长花岗岩和花岗闪长岩锆石206Pb/ 238U加权平均年龄分别为105.2Ma和113.4Ma。二长花岗岩和花岗闪长岩具有富钠(Na2O/K2O>1), 过铝质(A/CNK=1.19~1.68), 富集轻稀土(LREE)、大离子亲石元素(LIEE, 如Ba、K)和Th、U、Pb和Hf等元素, 亏损高场强元素(如Nb、Ta和Ti等)的特征, 属于高钾钙碱性过铝质岩石系列, 具有岛弧岩浆岩特征。同时具有中等的(La/Yb)N值(13.6~17.4), 高Mg#值(45.89~48.53), 以及Eu弱负异常(δEu=0.79~0.97)和Ce弱正异常(δCe=1.0~1.08)。锆石两阶段Hf模式年龄(tDM2)峰值分别处于0.95~1.0Ma和1.05~1.10Ma区间; εHf(t)值分别介于-4.47~+2.38和-2.73~+1.47, 二长花岗岩以负值为主, 花岗闪长岩正负值均有。综合研究认为, 二长花岗岩来源于中元古界未受幔源组分影响的古老基底地壳熔融而成, 花岗闪长岩来源于新元古界地壳物质并经历了壳-幔混合作用; 单竹坪矿床形成于燕山晚期岛弧或活动大陆边缘构造环境, 与古太平洋板块的俯冲相关, 其西南部或南部是成矿远景区。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号