首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The seismic hazard in the Gujarat region has been evaluated. The scenario hazard maps showing the spatial distribution of various parameters like peak ground acceleration, characteristics site frequency and spectral acceleration for different periods have been presented. These parameters have been extracted from the simulated earthquake strong ground motions. The expected damage to buildings from future large earthquakes in Gujarat region has been estimated. It has been observed that the seismic hazard of Kachchh region is more in comparison with Saurashtra and mainland. All the cities of Kachchh can expect peak acceleration in excess of 500?cm/s2 at surface in case of future large earthquakes from major faults in Kachchh region. The cities of Saurashtra can expect accelerations of less than 200?cm/s2 at surface. The mainland Gujarat is having the lowest seismic hazard as compared with other two regions of Gujarat. The expected accelerations are less than 50?cm/s2 at most of the places. The single- and double-story buildings in Kachchh region are at highest risk as they can expect large accelerations corresponding to natural periods of such small structures. Such structures are relatively safe in mainland region. The buildings of 3?C4 stories and tall structures that exist mostly in cities of Saurashtra and mainland can expect accelerations in excess of 100?cm/s2 during a large earthquake in Kachchh region. It has been found that a total of 0.11 million buildings in Rajkot taluka of Saurashtra are vulnerable to total damage. In Kachchh region, 0.37 million buildings are vulnerable. Most vulnerable talukas are Bhuj, Anjar, Rapar, Bhachau, and Mandvi in Kachchh district and Rajkot, Junagadh, Jamnagar, Surendernagar and Porbandar in Saurashtra. In mainland region, buildings in Bharuch taluka are more vulnerable due to proximity to active Narmada-Son geo-fracture. The scenario hazard maps presented in this study for moderate as well as large earthquakes in the region may be used to augment the information available in the probabilistic seismic hazard maps of the region.  相似文献   

3.
A seismic hazard map of India and adjacent areas   总被引:1,自引:0,他引:1  
We have produced a probabilistic seismic hazard map showing peak ground accelerations in rock for India and neighboring areas having a 10% probability of being exceeded in 50 years. Seismogenic zones were identified on the basis of historical seismicity, seismotectonics and geology of the region. Procedures for reducing the incompleteness of earthquake catalogs were followed before estimating recurrence parameters. An eastern United States acceleration attenuation relationship was employed after it was found that intensity attenuation for the Indian region and the eastern United States was similar. The largest probabilistic accelerations are obtained in the seismotectonic belts of Kirthar, Hindukush, Himalaya, Arakan-Yoma, and the Shillong massif where values of over 70% g have been calculated.  相似文献   

4.
The degree sheet Aeromagnetic maps up to 17‡N, acquired from the Geological Survey of India, have been manually redigitised at 6 minute intervals to study the long wavelength anomalies over peninsular India. These data have been collected at different survey altitude, epochs, flight line directions, etc. Great care has been taken to correct the total field map and remove the contribution due to the core field and prepare an accurate crustal anomaly map. For the first time, a regional map, depicting the NW-SE structural features north of the orthopyroxene isograd with the essentially E-W features to the south of it and revealing several well known structures, is presented. The analytical signal is calculated to delineate the source fields of these anomalies. It dramatically maps the charnockites and is able to delineate the orthopyroxene isograd. In the Dharwar region the magnetic signatures are associated with the intrusives/ iron ore bodies. Thus, we find that the source rocks of the aeromagnetic anomalies are the host province of charnockites in the SGT and the intrusives/iron ore bodies in the Dharwar belt. Gravity residuals are calculated and a tectonic map of the region is presented from the combined geopotential data.  相似文献   

5.
Buckle-controlled seismogenic faulting in peninsular India   总被引:1,自引:0,他引:1  
As intraplate earthquakes are often not associated with major known faults their location as well as their timing is unpredictable. In peninsular India the larger (M5.0) events occur mainly on reverse faults in a series of belts 400–800 km apart which are aligned roughly normal to the azimuth of convergence between the Indian and Eurasian plates. The location of the belts is controlled largely by the buckling wavelength of the lithosphere, and the seismogenic faults do not generate folding and sometimes result from it. There is consequently no need to postulate the creation of regularly spaced normal faults in an antecedent extensional phase, and the deformation is consistent with a plate-driving force such as gravity glide which is unlikely to reverse its polarity and which creates structures that are influenced by plate geometry at the leading edge. The thesis is potentially of value to seismic hazard mitigation as it identifies the zones that are most at risk.  相似文献   

6.
Banerjee  Soham  Kumar  Abhishek 《Natural Hazards》2018,92(2):1039-1064
Natural Hazards - National capital of India, Delhi is under moderate to high seismic hazard due to active regional faults such as the Mahendragarh fault, the Delhi Haridwar fault, the Sohna fault,...  相似文献   

7.
Identification and characterization of active faults and deciphering their seismic potential are of vital importance in seismic hazard assessment of any region. Seismic vulnerability of India is well known as more than 60 % of its area lies in high hazard zones due to the presence of major active faults in its plate boundaries and continental interiors, which produced large earthquakes in the past and have potential to generate major earthquakes in future. The safety of critical establishments, like Power plants, Refinaries and other lifeline structures is a major concern in these areas and calls for a better characterization of these faults to help mitigate the impact of future earthquakes. The paper provides a brief overview of the work carried out in India on active fault research, its limitations and immediate priorities.  相似文献   

8.
A method of seismic zonation based on deterministic modeling of rupture plane is presented in this work. This method is based on the modeling of finite rupture plane along identified lineaments in the region using the semi-empirical technique, of Midorikawa [(1993) Tectonophysics 218:287–295]. The modeling procedure follows ω2 scaling law, directivity effects, and other strong motion parameters. The technique of zonation is applied for technoeconomically important NE part of Brahmaputra valley that falls in the seismic gap region of Himalaya. Zonation map prepared for Brahmaputra valley for earthquakes of magnitude M > 6.0 show that approximately 90,000 km2 area fall in the highly hazardous zone IV, which covers region that can have peak ground accelerations of order more than 250 cm/s2. The zone IV covers the Tezu, Tinsukia, Dibrugarh, Ziro, North Lakhimpur, Itanagar, Sibsagar, Jorhat, Golaghat, Wokha, Senapati, Imphal, and Kohima regions. The Pasighat, Daring, Basar, and Seppa region belong to zone III with peak ground accelerations of the order 200–250 cm/s2. The seismic zonation map obtained from deterministic modeling of the rupture is consistent with the historical seismicity map and it has been found that the epicenter of many moderate and major earthquakes fall in the identified zones.  相似文献   

9.
The Gondwana successions (1–4 km thick) of peninsular India accumulated in a number of discrete basins during Permo-Triassic period. The basins are typically bounded by faults that developed along Precambrian lineaments during deposition, as well as affected by intrabasinal faults indicating fault-controlled synsedimentary subsidence. The patterns of the intrabasinal faults and their relationships with the respective basin-bounding faults represent both extensional and strike-slip regimes. Field evidence suggests that preferential subsidence in locales of differently oriented discontinuities in the Precambrian basement led to development of Gondwana basins with varying, but mutually compatible, kinematics during a bulk motion, grossly along the present-day E–W direction. The kinematic disparity of the individual basins resulted due to different relative orientations of the basement discontinuities and is illustrated with the help of a simple sandbox model. The regional E–W motion was accommodated by strike-slip motion on the transcontinental fault in the north.  相似文献   

10.
The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively.  相似文献   

11.
Natural Hazards - Indo-Gangetic plains are seismically most vulnerable due to the proximity of adjacent great Himalayan earthquakes and thick alluvium deposits of the Ganga River system. As the...  相似文献   

12.
13.
Seismic ground motion caused by earthquakes mainly affects the constructions and structures around its area of influence. In this context, the probabilistic seismic hazard analysis (PSHA) is a scientific step towards the safety analysis of any major construction such as nuclear power plant. Thus, the present study focused to estimate seismic hazard level at different probabilities for Kakrapar nuclear power plant located in the Western India. The hazard curves for the study area are developed following the procedure of PSHA suggested by Cornell–McGuire. Three source zones, Narmada-Tapti zone (NTZ), Rann of Kuchchh (ROK), and west passive margin (WPM), are classified on the basis of seismicity and tectonic setting of the study area. The estimated maximum magnitude (m max) for NTZ, ROK, and WPM are 6.9 ± 0.57, 6.5 ± 0.64, and 6.1 ± 0.64, respectively. Logic tree approach has been used for the development of hazard curves to account the epistemic uncertainties associated with the analysis. For maximum credible earthquake [MCE, i.e., the probability of exceedance of 2 % in 50 years (return period of ~2,500 years)], the peak spectral acceleration (i.e., PSA at 0.2 s) expected around 5 km of the Kakrapar nuclear power plant (site) is 0.23 g from all source zones; however, at exact site location, it is 0.18 g. The PSA values due to NTZ, ROK, and WPM based on MCE are 0.22, 0.065, and 0.052 g, respectively. In case of design-based earthquake (DBE, i.e., 50 % probability in 50 years (return period of ~110 years)), the calculated maximum spectral acceleration (SA) from all source zones is about 0.045 g. The PSA distribution for the DBE from the NTZ has reached a maximum value of 0.042 g; however, PSA for ROK and WPM is considerably low with a maximum value of 0.022 and 0.021 g, respectively. Considering the MCE and DBE, the estimated PSA at 0.2 s has a highest value of ~0.23 g from all source zones. Spectral accelerations (SAs) correspond to different periods are presented, and SA plots for NTZ zone can be considered as response spectra for the KAPS site. Deaggregation of PSHA in the present study is also discussed. PGA values reported in seismic zonation map and global seismic hazard analysis program around the present study area range from 0.05 to 0.2 g which is slightly lower than the peak acceleration obtained in this study. The results of this study would facilitate in the performance of the site-specific seismic probabilistic safety analysis.  相似文献   

14.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

15.
16.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   

17.
This paper presents the case histories of two catastrophic landslips in hard rock terrains with varied climatic and geological environments. The first slip is associated with a power project in very close proximity (200 m) of the Porthimund Dam (11°22N, 76°3430E), in a charnockitic terrain in the Nilgiri hills (Tamil Nadu), and the second is associated with a railroad structure (19°525N, 78°1720E), in Adilabad district (Andhra Pradesh), in a basaltic terrain.The landslip in the charnockites is attributable to: (1) a high degree of saprolitization in the charnockites, with maximum intensity in the crest portion; (2) the coincidence of a major joint pattern in a NE-SW direction, with the strike of the foliation; and (3) the poor-to-fair physical rock quality in the crest and scarp portions.The slips in the basaltic terrain are due to: (1) the partially altered, highly jointed nature of the regional trap rocks with boulder sizes varying from 20 cm to 250 cm in diameter and the debris accumulating in a precarious condition on the northeast side of the rail track, with unfavorable alignment direction; and (2) the instability created in the weak rock mass by the vibrational forces of heavily loaded running trains.The weathered state of the rock masses in both the cases, showing good agreement with their physical state, accounts for the landslips. The remedial measures suggested are also discussed.  相似文献   

18.
19.
We test the sensitivity of seismic hazard to three fault source models for the northwestern portion of Gujarat, India. The models incorporate different characteristic earthquake magnitudes on three faults with individual recurrence intervals of either 800 or 1600 years. These recurrence intervals imply that large earthquakes occur on one of these faults every 266–533 years, similar to the rate of historic large earthquakes in this region during the past two centuries and for earthquakes in intraplate environments like the New Madrid region in the central United States. If one assumes a recurrence interval of 800 years for large earthquakes on each of three local faults, the peak ground accelerations (PGA; horizontal) and 1-Hz spectral acceleration ground motions (5% damping) are greater than 1 g over a broad region for a 2% probability of exceedance in 50 years' hazard level. These probabilistic PGAs at this hazard level are similar to median deterministic ground motions. The PGAs for 10% in 50 years' hazard level are considerably lower, generally ranging between 0.2 g and 0.7 g across northwestern Gujarat. Ground motions calculated from our models that consider fault interevent times of 800 years are considerably higher than other published models even though they imply similar recurrence intervals. These higher ground motions are mainly caused by the application of intraplate attenuation relations, which account for less severe attenuation of seismic waves when compared to the crustal interplate relations used in these previous studies. For sites in Bhuj and Ahmedabad, magnitude (M) 7 3/4 earthquakes contribute most to the PGA and the 0.2- and 1-s spectral acceleration ground motion maps at the two considered hazard levels.  相似文献   

20.
Typically or arguably Ediacaran fossils (635 Ma to 543 Ma) are reported by several research groups from one unit of the Chhattisgarh and two units of the Vindhyan Supergroups in peninsular India. Depositional ages of the host sediments, however, are inferred to be ∼1000 Ma and ∼ 1630 Ma as determined by U-Pb dating of magmatic and detrital zircons in rhyolitic tuff (∼ porcellanite) and sandstones, provenance considerations and paleopole positions. The contradiction of absolute ages results from inferring the Ediacaran age strictly on the basis of fossils. I argue that the fossils reported from the Chhattisgarh and Vindhyan Supergroups should be considered mostly Mesoproterozoic and late Proterozoic in age. I also argue that although the Ediacaran Period records explosive diversity of preserved fossils, many forms very likely appeared much earlier with variable degrees of preservation or none at all at times, and, that their age-ranges extend to the Paleoproterozoic. I hypothesize that the rate of increase of biological diversity was lower than the rate of preservation in certain geological intervals, especially immediately after extinction events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号