首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   

2.
Spatial variations in aerosol optical properties as function of latitude and longitude are analysed over the Bay of Bengal and Arabian Sea during ICARB cruise period of March–May 2006 from in situ sun photometer and MODIS (Terra, Aqua) satellite measurements. Monthly mean 550 nm aerosol optical depths (AODs) over the Bay of Bengal and Arabian Sea show an increase from March to May both in spatial extent and magnitude. AODs are found to increase with latitude from 4°N to 20°N over the Bay of Bengal while over Arabian Sea, variations are not significant. Sun photometer and MODIS AODs agree well within ±1σ variation. Bay of Bengal AOD (0.28) is higher than the Arabian Sea (0.24) latitudinally. Aerosol fine mode fraction (FMF) is higher than 0.6 over Bay of Bengal, while FMF in the Arabian Sea is about 0.5. Bay of Bengal α(~1) is higher than the Arabian Sea value of 0.7, suggesting the dominance of fine mode aerosols over Bay of Bengal which is corroborated by higher FMF values over Bay of Bengal. Air back trajectory analyses suggest that aerosols from different source regions contribute differently to the optical characteristics over the Bay of Bengal and Arabian Sea.  相似文献   

3.
Collocated measurements of the optical and physical properties of columnar and near-surface aerosols were carried out from Manora Peak, Nainital (a sparsely inhabited, high altitude location, ~2 km above mean sea level, in the Himalayas), during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) under the Geosphere Biosphere Programme of the Indian Space Research Organization (ISRO-GBP). Under this, observational data of spectral aerosol optical depths (AOD), mass concentration of aerosol black carbon (M B ), mass concentration (M T ) and number concentration (N t ) of composite (total) aerosols near the surface and meteorological parameters were collected during the period February 15 to April 30, 2006. Though very low (<0.1 at 500 nm) AODs were observed during clear days, as much as a four-fold increase was seen on hazy days. The Ångström exponent (α), deduced from the spectral AODs, revealed high values during clear days, while on hazy days α was low; with an overall mean value of 0.69 ± 0.06 for the campaign period. BC mass concentration varied between 0.36 and 2.87 μg m?3 and contributed in the range 0.7 to 1.8% to the total aerosol mass. Total aerosol number concentration and BC mass concentration showed diurnal variation with a midnight and early morning minimum and a late afternoon maximum; a pattern quite opposite to that seen in low altitude stations. These are attributed to the dynamics of the atmospheric boundary layer.  相似文献   

4.
Mass loading and chemical composition of atmospheric aerosols over the Arabian Sea during the pre-monsoon months of April and May have been studied as a part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB). These investigations show large spatial variabilities in total aerosol mass loading as well as that of individual chemical species. The mass loading is found to vary between 3.5 and 69.2 μg m?3, with higher loadings near the eastern and northern parts of Arabian Sea, which decreases steadily to reach its minimum value in the mid Arabian Sea. The decrease in mass loading from the coast of India towards west is estimated to have a linear gradient of 1.53 μg m?3/° longitude and an e?1 scale distance of ~2300 km. SO 4 2? , Cl? and Na+ are found to be the major ionic species present. Apart from these, other dominating watersoluble components of aerosols are NO 3 ? (17%) and Ca2+ (6%). Over the marine environment of Arabian Sea, the non-sea-salt component dominates accounting to ~76% of the total aerosol mass. The spatial variations of the various ions are examined in the light of prevailing meteorological conditions and airmass back trajectories.  相似文献   

5.
For the first time, chemical characterization of PM10 aerosols was attempted over the Bay of Bengal (BoB) and Arabian Sea (AS) during the ICARB campaign. Dominance of SO 4 2? , NH 4 + and NO 3 ? was noticed over both the regions which indicated the presence of ammonium sulphate and ammonium nitrate as major water soluble particles playing a very important role in the radiation budget. It was observed that all the chemical constituents had higher concentrations over Bay of Bengal as compared to Arabian Sea. Higher concentrations were observed near the Indian coast showing influence of landmass indicating that gaseous pollutants like SO2, NH3 and NO x are transported over to the sea regions which consequently contribute to higher SO 4 2? , NH 4 + and NO 3 ? aerosols respectively. The most polluted region over BoB was 13°?19°N and 70°?90°E while it was near 11°N and 75°E over AS. Although the concentrations were higher over Bay of Bengal for all the chemical constituents of PM10 aerosols, per cent non-sea salt (nss) fraction (with respect to Na) was higher over Arabian Sea. Very low Ca2+ concentration was observed at Arabian Sea which led to higher atmospheric acidity as compared to BoB. Nss SO 4 2? alone contributed 48% of total water soluble fraction over BoB as well as AS. Ratios SO 4 2? /NO ? 3 over both the regions (7.8 and 9 over BoB and AS respectively) were very high as compared to reported values at land sites like Allahabad (0.63) and Kanpur (0.66) which may be due to very low NO.3 over sea regions as compared to land sites. Air trajectory analysis showed four classes: (i) airmass passing through Indian land, (ii) from oceanic region, (iii) northern Arabian Sea and Middle East and (iv) African continent. The highest nss SO 4 2? was observed during airmasses coming from the Indian land side while lowest concentrations were observed when the air was coming from oceanic regions. Moderate concentrations of nss SO2. 4 were observed when air was seen moving from the Middle East and African continent. The pH of rainwater was observed to be in the range of 5.9–6.5 which is lower than the values reported over land sites. Similar feature was reported over the Indian Ocean during INDOEX indicating that marine atmosphere had more free acidity than land atmosphere.  相似文献   

6.
Mass concentration and mass size distribution of total (composite) aerosols near the surface are essential inputs needed in developing aerosol models for radiative forcing estimation as well as to infer the environment and air quality. Using extensive measurements onboard the oceanographic research vessel, Sagar Kanya, during its cruise SK223B in the second phase of the ocean segment of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), the spatial distribution of the mass concentration and mass size distribution of near-surface aerosols are examined for the first time over the entire Arabian Sea, going as far as 58°E and 22°N, within a span of 26 days. In general, the mass concentrations (M T ) were found to be low with the mean value for the entire Arabian Sea being 16.7 ± 7 μg m?3; almost 1/2 of the values reported in some of the earlier campaigns. Coarse mode aerosols contributed, on an average, 58% to the total mass, even though at a few pockets accumulation mode contribution dominated. Spatially, significant variations were observed over central and northern Arabian Sea as well as close to the west coast of India. In central Arabian Sea, even though the M T was quite low, contribution ofs accumulation aerosols to the total mass concentration was greater than 50%. Effective radius, a parameter important in determining scattering properties of aerosol size distribution, varied between 0.07 and 0.4 μm with a mean value of 0.2 μm. Number size distributions, deduced from the mass size distributions, were approximated to inverse power-law form and the size indices (ν) were estimated. It was found to vary in the range 3.9 to 4.2 with a mean value of 4.0 for the entire oceanic region. Extinction coefficients, estimated using the number-size distributions, were well-correlated with the accumulation mode mass concentration with a correlation coefficient of 0.82.  相似文献   

7.
MODIS (Moderate Resolution Imaging Spectroradiometer) level-3 aerosol data, NCEP (National Centers for Environmental Prediction) reanalysis winds and QuikSCAT ocean surface winds were made use of to examine the role of atmospheric circulation in governing aerosol variations over the Bay of Bengal (BoB) during the first phase of the ICARB (Integrated Campaign for Aerosols, gases and Radiation Budget) campaign (March 18–April 12, 2006). An inter-comparison between MODIS level-3 aerosol optical depth (AOD) data and ship-borne MICROTOPS measurements showed good agreement with correlation 0.92 (p < 0.0001) and a mean MODIS underestimation by 0.01. During the study period, the AOD over BoB showed high values in the northern/north western regions, which reduced towards the central and southern BoB. The wind patterns in lower atmospheric layers (> 850 hPa) indicated that direct transport of aerosols from central India was inhibited by the presence of a high pressure and a divergence over BoB in the lower altitudes. On the other hand, in the upper atmospheric levels, winds from central and northern India stretched south eastwards and converged over BoB with a negative vorticity indicative of a downdraft. These wind patterns pointed to the possibility of aerosol transport from central India to BoB by upper level winds. This mechanism was further confirmed by the significant correlations that AOD variations over BoB showed with aerosol flux convergence and flux vorticity at upper atmospheric levels (600–500 hPa). AOD in central and southern BoB away from continental influences displayed an exponential dependence on the QuikSCAT measured ocean surface wind speed. This study shows that particles transported from central and northern India by upper atmospheric circulations as well as the marine aerosols generated by ocean surface winds contributed to the AOD over the BoB during the first phase of ICARB.  相似文献   

8.
Airborne measurements of the number concentration and size distribution of aerosols from 13 to 700 nm diameter have been made at four vertical levels across a coastline at Bhubaneswar (20°25′N, 85°83′E) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) programme conducted in March–April 2006. The measurements made during the constant-level flights at 0.5, 1, 2 and 3 km altitude levels extend ~100 km over land and ~150km over ocean. Aerosol number concentrations vary from 2200 to 4500 cm?3 at 0.5 km level but are almost constant at ~ 6000 cm?3 and ~ 800 cm?3 at 2 and 3 km levels, respectively. At 1km level, aerosol number concentration shows a peak of 18,070 cm?3 around the coastline. Most of the aerosol size distribution curves at 0.5 km and 1 km levels are monomodal with a maxima at 110nm diameter which shifts to 70 nm diameter at 2 and 3 km levels. However, at the peak at 1 km level, number concentration has a bimodal distribution with an additional maximum appearing in nucleation mode. It is proposed that this maxima in nucleation mode at 1 km level may be due to the formation and transport of new particles from coastal regions.  相似文献   

9.
First time observations of spectral aerosol optical depths (AODs) at Mohal (31.9°N, 77.11°E; altitude 1154 m amsl) in the Kullu valley, located in the northwestern Indian Himalayan region, have been carried out during Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), as a part of the Indian Space Research Organisation-Geosphere Biosphere Program (ISRO-GBP). AODs at six wavelengths are obtained using Microtops-II Sunphotometer and Ozonometer. The monthly mean values of AOD at 500 nm are found to be 0.27 ± 0.04 and 0.24 ± 0.02 during March and April, 2006 respectively. However, their monthly mean values are 0.33 ± 0.04 at 380 nm and 0.20 ± 0.03 nm at 870 nm during March 2006 and 0.31 ± 0.3 at 380 nm and 0.17 ± 0.2 at 870 nm during April 2006, showing a gradual decrease in AOD with wavelength. The Ångstrom wavelength exponent ‘α’ had a mean value of 0.72 ± 0.05, implying reduced dominance of fine particles. Further, the afternoon AOD values are higher as compared to forenoon values by ~ 33.0% during March and by ~ 9.0% during April 2006 and are attributed to the pollutant lifted up from the valley by the evolving boundary layer. Besides the long-range transportation of aerosol particles by airmass from the Great Sahara and the Thar Desert regions to the observing site, the high values of AODs have also been influenced by biomass burning and frequent incidents of forest fire at local levels.  相似文献   

10.
During the field cruises of the Indian Ocean Experiment (INDOEX) extensive measurements on the atmospheric chemical and aerosol composition are undertaken to study the long-range transport of air pollution from south and southeast Asia towards the Indian Ocean during the dry monsoon season in 1998 and 1999. The present paper discusses the temporal and spatial variations in aerosols and aerosol forcing during the winter monsoon season (January-March) for INDOEX first field phase (FFP) in 1998 and INDOEX intensive field phase (IFP) in 1999. An interactive chemistry/aerosol model (LMDZ.3.3) is used to investigate the variation in the spatial distribution of tropospheric sulphate aerosols during 1998 and 1999. The model results depict major enhancement in the sulphate aerosol concentrations, radiative forcing (RF) and optical depth over the Indian subcontinent and adjoining marine areas between INDOEX-FFP and IFP. A significant increase in transport of sulphate aerosols from the continents to the Indian Ocean region has also been simulated during the winter monsoon in 1999. The mean RF over INDOEX-FFP in 1998 is found to be ?1.2 Wm–2 while it increased to ?1.85 Wm–2 during INDOEX-IFP in 1999. Model results reveal a mean sulphate aerosol optical depth (AOD) of 0.08 and 0.14 over Indian subcontinent during 1998 and 1999, respectively. The model results suggest that elevated AOD downwind of source regions in India can significantly affect the regional air quality and adjoining marine environments.  相似文献   

11.
The spectral AOD measurements have been made for the first time over Patiala during multi-platform field campaign ICARB—2006 using a Multi-Wavelength Radiometer (MWR) along with the suspended particulate matter measurements with a high volume sampler. Spectral AOD has higher values in May in comparison to March and April. The monthly mean AOD values at 500 nm are 0.26 ± 0.08, 0.36 ± 0.19 and 0.58 ± 0.20 for the months of March, April and May respectively. The mean AOD is more during afternoon in comparison to forenoon at all wavelengths. The atmospheric turbidity is higher in May and is attributed to dust transported by southerly winds prevailing during this month. The Ångström parameter α varies between zero and 0.68 while β ranges from 0.1 to 0.9. The columnar water vapour content ranges from 0.12 to 2.92 cm, having a mean value of 1.06 ± 0.648 cm. The mean total suspended particulate matter is 334.41 ± 97.56 μgm/m3, an indication of high aerosol loading over Patiala during the campaign period.  相似文献   

12.
Aerosol optical depth (AOD) at 630 nm wavelength over the oceanic regions adjoining the Asian Continent is examined using a seven-year long data base derived from the Advanced Very High Resolution Radiometer (AVHRR) on board NOAA satellite to study the mean spatial and temporal variations as well as to understand the impact of aerosols advecting from the continent. Depending on the prevailing meteorological conditions and nature of synoptic circulation, the AOD over the oceanic region shows a systematic annual variation. This annual pattern inturn also shows an inter-annual variability because of the corresponding variations in the meteorological features over the continent as well as small-scale deviations in the nature of synoptic circulation. The annual variation over the oceanic regions also shows a pronounced spatial heterogeneity depending on the influence of continental aerosols. Making use of the wind speed dependence of sea-salt AOD at far-oceanic environments and monthly mean wind speeds at small grids of size 5° × 5°, the annual variation of sea-salt AOD at different locations is studied to understand the spatial heterogeneity of this component. The residual component obtained by subtracting this from the measured AOD is the non-oceanic component due to advection from continent. The source regions for major continental advections are delineated from the analysis of air-mass back trajectories at appropriate locations identified from the annual pattern of non-oceanic component. The long-term effect of the continental impact is examined from the mean trend of AOD over the three major oceanic regions. This study shows that the continental influence is most significant over the Arabian Sea, followed by the Bay of Bengal and is almost insignificant in most of the regions over the Southern Hemispheric Indian Ocean, except for the effect of smoke aerosols over a few locations near Indonesia and Madagascar.  相似文献   

13.
The paper addresses influence of dust particles on the aerosol loading over the major deserts in the northern hemisphere. The role of dust aerosols in the total aerosol concentration and size distribution of the particles are analysed. It is observed that the aerosol loading is high in the northern hemisphere of which the deserts and adjoining areas in Asia and Africa play a leading role. Over the entire oceanic region, except some parts of the Atlantic Ocean near to the West coast of Africa and the Arabian Sea, aerosol loading is less. The Sahara Desert is the prominent source of dust aerosols throughout the year. The deserts of Asia are also prominent sources of dust aerosols on a global basis. Above 70% of the total aerosol optical depth (AOD) is contributed by the dust particles, reaching to around 90% during spring months March, April and May over the Sahara Desert, which is the major source of dust aerosols. Goddard Chemistry Aerosol Radiation and Transport model is used to estimate the dust aerosol concentration over the deserts of Asia and Africa. The model output almost agrees with the regions of dust loading obtained from the Envisat/SCIAMACHY. Hence, the model is reliable in estimating the dust aerosol loading over the major dust aerosol sources. The major portion of the total dust loading belongs to coarse mode particles.  相似文献   

14.
Under the background of global warming and excessive human activities, much surface water in drylands is experiencing rapid degradation or shrinkage in recent years. The shrinkage of surface water, especially the degradation of lakes and their adjacent wetlands in drylands, may lead to the emergence of new salt dust storm hotspots, which causes greater danger. In this paper, based on high spatial resolution global surface water (GSW) and multiangle implementation of atmospheric correction (MAIAC) AOD data, we systematically analyze the dynamic characteristics of surface water and aerosols in typical drylands (Central Asia, CA) between 2000 and 2018. Simultaneously, combined with auxiliary environment variables, we explore the driving mechanisms of surface water on the regional salt/sand aerosols on different spatial scales. The results show that the seasonal surface water features an increasing trend, especially a more dramatic increase after 2015, and the permanent surface water indicates an overall decrease, with nearly 54.367 % at risk of receding and drying up. In typical lakes (Aral Sea and Ebinur Lake), the interannual change feature of the surface water area (WA) is that a continuous decrease during the study period occurs in Aral Sea area, yet a significant improvement has occurred in Ebinur Lake after 2015, and the degradation of Ebinur Lake takes place later and its recovery earlier than Aral Sea. The aerosol optical depth (AOD) in CA shows obvious seasonal variation, with the largest in spring (0.192 ± 0173), next in summer (0.169 ± 0.106), and the smallest in autumn (0.123 ± 0.065). The interannual variation of AOD exhibits an increase from 2000 to 2018 in CA, with high AOD areas mainly concentrated in the Taklamakan Desert and some lake beds resulting from lake degradation, including Aral Sea and Ebinur Lake. The AOD holds a similar trend between Aral Sea and Ebinur Lake on an interannual scale. And the AOD over Ebinur Lake is lower than that over Aral Sea in magnitude and lags behind in reaching the peak compared with Aral Sea. The WA change can significantly affect aerosol variation directly or indirectly on the aerosol load or mode size, but there are obvious differences in the driving mechanisms, acting paths, and influence magnitude of WA on aerosols on different spatial scales. In addition, the increase of WA can significantly directly suppress the increase of Ångström exponent (AE), and the effects of WA on AOD are realized majorly by an indirect approach. From the typical lake perspective, the effects of WA on aerosol in Aral Sea are achieved via an indirect path; and the decrease of WA can indirectly promote the AOD rise, and directly stimulate the AE growth in Ebinur Lake.  相似文献   

15.
During the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) over India, high-resolution airborne measurements of the altitude profiles of the mass concentrations (MB) of aerosol black carbon (BC) were made off Bhubaneswar (BBR, 85.82°E, 20.25°N), over northwest Bay of Bengal, in the altitude region upto 3 km. Such high-resolution measurements of altitude profiles of aerosols are done for the first time over India. The profiles showed a near-steady vertical distribution of MB modulated with two small peaks, one at 800m and the other at ~2000m. High resolution GPS (Global Positioning System) sonde (Vaisala) measurements around the same region onboard the research vessel Sagar Kanya (around the same time of the aircraft sortie) revealed two convectively well mixed layers, one from ground to ~700m with an inversion at the top and the other extends from 1200m to ~2000m with a second inversion at ~2200m and a convectively stable region in the altitude range 700–1200m. The observed peaks in the MB profile are found to be associated with these temperature inversions. In addition, long-range transport from the Indo-Gangetic Plain (IGP) and deserts lying further to the west also influence the vertical profile of BC. Latitudinal variation of MB showed a remarkable land ocean contrast at the 500m altitude (within the well mixed region) with remarkably lower values over oceans, suggesting the impact of strong sources over the mainland. However, above the ABL (at 1500m), the latitudinal variations were quite weak, and this appears to be resulting from the impact of long-range transport. Comparison of the altitude profiles of MB over BoB off BBR with those obtained during the earlier occasion over the inland stations of Hyderabad and Kanpur showed similarities above ~500m, with MB remaining around a steady value of ~1 μg m?3. However, large differences are seen within the ABL. Even though the observed MB values are not unusually high, their near constancy in the vertical column will have important implications to radiative forcing.  相似文献   

16.
Indian Space Research Organization (ISRO) conducted the ‘Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)’ for a two-month pre-monsoon period in 2006 with the ocean segment covering Bay of Bengal and Arabian Sea. During this campaign, carbon monoxide (CO) was continuously monitored using a non-dispersive IR analyser. Quantifying CO in ambient air is vital in determining the air quality of a region. Being toxic, CO is a criteria pollutant, but it is a weak green house gas. Globally, very few measurements exist over marine atmospheres to study its temporal pattern; particularly in situ CO measurements are few over the Bay of Bengal and Arabian Sea for comparison. Present measurements indicate: (i) predominant single peak in the diurnal pattern of CO over the marine atmosphere in contrast to the double peak over the continent, (ii) the mean diurnal CO over the marine atmosphere showing an increasing trend towards evening hours, (iii) the amplitude of the AN peaks over the marine atmosphere was ∼ 100 ppbv, while at a remote island site in the Indian Ocean it was ∼ 5 ppbv and (iv) high CO values were observed close to continent and the long range transport by wind also caused CO highs.  相似文献   

17.
Continuous and campaign-based aerosol field measurements are essential in understanding fundamental atmospheric aerosol processes and for evaluating their effect on global climate, environment and human life. Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over the Indian region in order to understand the additional sources (forest fires) of aerosol. The higher values in black carbon aerosol mass concentration and aerosol optical depth correlated well with forest fires occurring over the region. Ozone Monitoring Instrument (OMI) aerosol index (AI) variations showed absorbing aerosols over the region and correlated with ground measurements.  相似文献   

18.
Characteristics of aerosols in the Atmospheric Boundary Layer (ABL) obtained from a bistatic CW lidar at Trivandrum for the last one decade are used to investigate the role of ABL micro-meteorological processes in controlling the altitude distribution and size spectrum. The altitude structure of number density shows three distinct zones depending on the prevailing boundary layer feature; viz, the well-mixed region, entertainment region and upper mixing region. In the lower altitudes vertical mixing is very strong (the well-mixed region) the upper limit of which is defined as aerosol-mixing height, is closely associated with the low level inversion. The aerosol mixing height generally lies in the range 150 to 400 m showing a strong dependence on the vertical eddy mixing processes in ABL. Above this altitude, the number density decreases almost exponentially with increase in altitude with a scale height of 0.5–1.5 km. The aerosol mixing height is closely associated with the height of the Thermal Internal Boundary Layer (TIBL). Sea-spray aerosols generated as a result of the interaction of surface wind with sea surface forms an important component of mixing region aerosols at this location. This component shows a non-linear dependence on wind speed. On an average, depending on the season, the mixing region contributes about 10–30% of the columnar aerosol optical depth (AOD) at 0.5Μm wavelength. A long term increasing trend (∼ 2.8% per year) is observed in mixing region AOD from 1989 to 1997. A study on the development of the aerosols in the nocturnal mixing region shows that the convectively driven daytime altitude structure continues to persist for about 4–5 hrs. after the sunset and thereafter the altitude structure is governed by vertical structure of horizontal wind. Stratified aerosol layers associated with stratified turbulence is very common during the late night hours.  相似文献   

19.
本次研究利用MODIS、CALIPSO等卫星观测资料以及MERRA-2再分析资料分析了2007–2017年撒哈拉地区气溶胶光学厚度的空间分布特征。结果表明,撒哈拉地区气溶胶光学厚度的空间分布具有明显的季节变化,夏季沙尘气溶胶光学厚度高值区位于撒哈拉北部地区,高达0.6以上;而冬季沙尘气溶胶光学厚度高值区位于撒哈拉南部地区,最大值约为0.5。此外,撒哈拉地区在不同季节的主要气溶胶类型均为沙尘,但在撒哈拉南部地区沙尘气溶胶光学厚度对总气溶胶光学厚度的贡献有明显的季节性差异。基于CALIPSO体积退偏比的研究结果表明,在撒哈拉南部地区,夏季人为气溶胶占比大,气溶胶粒子趋于球形,冬季气溶胶粒子的退偏比则明显高于夏季,粒子非球形程度更高。夏季撒哈拉北部地区位于脊前槽后的位置,以南地区近地面主要为偏西风,携带了大量水汽的气流由大西洋吹向撒哈拉地区,使撒哈拉南部地区进入雨季,增强了沙尘气溶胶的沉降,因此夏季撒哈拉地区沙尘气溶胶光学厚度分布北高南低;冬季高压控制着撒哈拉北部地区,撒哈拉南部地区近地面盛行偏东风,且冬季温度偏低,容易形成逆温,不利于沙尘气溶胶和局地污染物扩散,导致沙尘气溶胶光学厚度南高北...  相似文献   

20.
Aerosols are one of the important atmospheric constituents and exert indirect impact on climate through the modification of microphysical and radiative properties of clouds that in turn perturb the precipitation pattern. Thus, the long term quantification of changes in aerosol and cloud characteristics and their interactions on both temporal as well as spatial scale will provide a crucial information for the better assessment of future climate change. In present study, 18 years (2003–2020) MODerate Resolution Imaging Spectro-radiometer (MODIS) derived aerosol-cloud dataset over the Northern Indian Ocean (NIO) were analysed to assess climatology and trend of aerosol, cloud characteristics and their correlation. We found a strong heterogeneity in spatio-temporal variation of aerosol and cloud parameters over the NIO that are more prominent for the coastal region. The climatological mean of aerosol loading is found high (AOD ≥ 0.5) over the outflow region along the Indian sub-continent and low (AOD ≤ 0.2) over the northern equatorial open ocean. The climatological mean of cloud properties shows dominance of optically thicker deep convective (CTP < 600 hPa and CTT < 260 K) clouds over the southern Bay of Bengal (BoB) and thinner shallow (CTP > 700 hPa and CTT > 273 K) over the northwestern Arabian Sea (AS). Similarly, bigger effective radii (>17 µm) observed along the equatorial open ocean whereas smaller CER (<17 µm) were found over Indian sub-continental coastline and western AS. Further, trend analysis reveals an increasing pattern in AOD (0.002 yr?1), CER (0.051 µm yr?1), LWP (0.033 gm?2 yr?1) and CF (0.002 yr?1) while COD, CTT and CTP show negative trend in order of ?0.005 yr?1, ?0.094 K yr?1 and ?1.160 hPa yr?1, respectively. We also perform similar analysis for seven sub-region of interest (R1 to R7) across the NIO and results show a decreasing pattern in AOD (?0.001 yr?1) at R4 against maximum mean AOD (0.44 ± 0.03). However, coastal sub-regions R1 and R5 illustrate maximum increase in aerosol loading (>0.003 yr?1) suggesting a significant impact of sub-continental outflow over the regions. The spatial correlation of cloud properties with respect to AOD shows a positive slope for CER (0.14) and CF (0.48) and a negative for COD (?0.19), LWP (?0.18), CTT (?0.37), CTP (?0.41). The present study provides in-depth information about the aerosol-cloud characteristics for a long term scale over NIO and could be useful in regional aerosol-cloud interaction induced climate forcing estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号