首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of the phase boundary between ilmenite and perovskite structures in MgSiO3 has been made at pressures between 18 and 24 GPa and temperatures up to 2000 °C by in situ X-ray diffraction measurements using synchrotron radiation and quench experiments. It was difficult to precisely define the phase boundary by the present in situ X-ray observations, because the grain growth of ilmenite hindered the estimation of relative abundances of these phases. Moreover, the slow reaction kinetics between these two phases made it difficult to determine the phase boundary by changing pressure and temperature conditions during in situ X-ray diffraction measurements. Nevertheless, the phase boundary was well constrained by quench method with a pressure calibration based on the spinel-postspinel boundary of Mg2SiO4 determined by in situ X-ray experiments. This yielded the ilmenite-perovskite phase boundary of P (GPa) = 25.0 (±0.2) – 0.003 T (°C) for a temperature range of 1200–1800 °C, which is generally consistent with the results of the present in situ X-ray diffraction measurements within the uncertainty of ∼±0.5 GPa. The phase boundary thus determined between ilmenite and perovskite phases in MgSiO3 is slightly (∼0.5 GPa) lower than that of the spinel-postspinel transformation in Mg2SiO4. Received: 19 May 1999 / Accepted: 21 March 2000  相似文献   

2.
In situ X-ray observations of the phase transition from ilmenite to perovskite structure in MnGeO3 were carried out in a Kawai-type high-pressure apparatus interfaced with synchrotron radiation. The phase boundary between the ilmenite and perovskite structures in the temperature range of 700–1,400°C was determined to be P (GPa) = 16.5(±0.6) − 0.0034(±0.0006)T (°C) based on Anderson’s gold pressure scale. The Clapeyron slope, dP/dT, determined in this study is consistent with that for the transition boundary between the ilmenite and the perovskite structure in MgSiO3.  相似文献   

3.
In situ X-ray diffraction study was conducted to identify the crystal structure of the “Al-phase”, which was previously reported to form in basaltic compositions at pressures and temperatures of the uppermost part of the lower mantle. Le Bail whole-pattern fitting method was adopted to investigate the structure of the Al-phase under high pressure and temperature as well as ambient conditions. Observed patterns were satisfactorily fitted using the “hexagonal phase” with space group P63/m (plus minor amount of garnet) under both of these conditions. On the other hand, the calcium ferrite structure model proposed in some earlier studies based on quench experiments yielded profile-fitting results at significantly lower confidence levels, particularly at simultaneous high pressure and high temperature conditions, suggesting that this phase may not form in oceanic crust materials subducted in the uppermost lower mantle. The difference in densities of hexagonal and calcium ferrite phases, however, is only ~1% under pressures and temperatures of the uppermost part of the lower mantle conditions, which yields a negligible effect on the bulk density of the subducted oceanic crust.  相似文献   

4.
The structural changes of CaSnO3, a GdFeO3-type perovskite, have been investigated to 7 GPa in a diamond-anvil cell at room temperature using single-crystal X-ray diffraction. Significant changes are observed in both the octahedral Sn–O bond lengths and tilt angles between the SnO6 octahedra. The octahedral (SnO6) site shows anisotropic compression and consequently the distortion of SnO6 increases with pressure. Increased pressure also results in a decrease of both of the inter-octahedral angles, Sn–O1–Sn and Sn–O2–Sn, indicating that octahedral tilting increases with increasing pressure, chiefly equivalent to rotation of the SnO6 octahedra about the pseudocubic <001>p axis. The distortion in the CaO12 and SnO6 sites, along with the octahedral SnO6 tilting, is attributed to the SnO6 site being less compressible than the CaO12 site.Acknowledgments The authors acknowledge with gratitude the financial support for this work from NSF grant EAR-0105864. Ruby pressure measurements were conducted with the Raman system in the Vibrational Spectroscopy Laboratory in the Department of Geosciences at Virginia Tech with the help of Mr. Charles Farley.  相似文献   

5.
 Phase transitions in MgAl2O4 spinel have been studied at pressures 22–38 GPa, and at temperatures up to 1600 °C, using a combination of synchrotron radiation and a multianvil apparatus with sintered diamond anvils. Spinel dissociated into a mixture of MgO plus Al2O3 at pressures to 25 GPa, while it transformed to the CaFe2O4 (calcium ferrite) structure at higher pressures via the metastably formed oxide mixture upon increasing temperature. Neither the e-phase nor the CaTi2O4-type MgAl2O4, which were reported in earlier studies using the diamond-anvil cell, were observed in the present pressure and temperature range. The zero-pressure bulk modulus of the calcium-ferrite-type MgAl2O4 was calculated as K=213 (3) GPa, which is significantly lower than that reported by Yutani et al. (1997), but is consistent with a more recent result by Funamori et al. (1998) and that estimated by an ab initio calculation by Catti (2001). Received: 2 April 2002 / Accepted: 29 July 2002 Acknowledgements The authors thank Y. Higo, Y. Sueda, T.␣Ueda, Y. Tanimoto, A. Fukuyama, K. Ochi, F. Kurio and T. Kawahara for help in the in situ X-ray observations at SPring-8 (No: 2000A0061-CD-np and 2000B0093-ND-np). We also thank W.␣Utsumi, J. Ando and O. Shimomura for advice and encouragement during this study, and N. Funamori and an anonymous reviwer for comments on the article. The present study is partly supported by the grant-in-aid for Scientific Research (A) of the Ministry of Education, Science, Sport and Culture of the Japanese government (no: 11694088).  相似文献   

6.
 The partitioning of Mg and Fe between magnesiowüstite and ringwoodite solid solutions has been measured between 15 and 23 GPa and 1200–1600 C using both Fe and Re capsule materials to vary the oxidation conditions. The partitioning results show a clear dependence on the capsule material used due to the variation in Fe3+ concentrations as a consequence of the different oxidation environments. Using results from experiments performed in Fe capsules, where metallic Fe was also added to the starting materials, the difference in the interaction parameters for the two solid solutions (W FeMg mwW FeMg ring) is calculated to be 8.5±1 kJ mol−1. Similar experiments performed in Re metal capsules result in a value for W FeMg mwW FeMg ring that is apparently 4 kJ higher, if all Fe is assumed to be FeO. Electron energy-loss near-edge structure (ELNES) spectroscopic analyses, however, show Fe3+ concentrations to be approximately three times higher in magnesiowüstite produced in Re capsules than in Fe capsules and that Fe3+ partitions preferentially into magnesiowüstite, with K D Fe3+ ring/mw estimated between 0.1 and 0.6. Using an existing activity composition model for magnesiowüstite, a least–squares fit to the partitioning data collected in Fe capsules results in a value for the ringwoodite interaction parameter (W FeMg ring) of 3.5±1 kJ mol−1. The equivalent regular interaction parameter for magnesiowüstite (W FeMg mw) is 12.1±1.8 kJ mol. These determinations take into account the Fe3+ concentrations that occur in both phases in the presence of metallic Fe. The free energy change in J mol−1 for the Fe exchange reaction can be described, over the range of experimental conditions, by 912 + 4.15 (T−298)+18.9P with T in K, P in kbar. The estimated volume change for this reaction is smaller than that predicted using current compilations of equation of state data and is much closer to the volume change at ambient conditions. These results are therefore a useful test of high pressure and temperature equation of state data. Using thermodynamic data consistent with this study the reaction of ringwoodite to form magnesiowüstite and stishovite is calculated from the data collected using Fe capsules. Comparison of these results with previous studies shows that the presence of Fe3+ in phases produced in multianvil experiments using Re capsules can have a marked effect on apparent phase relations and determined thermodynamic properties. Received: 13 September 2000 / Accepted: 25 March 2001  相似文献   

7.
 An experimental technique to make real-time observations at high pressure and temperature of the diamond-forming process in candidate material of mantle fluids as a catalyst has been established for the first time. In situ X-ray diffraction experiments using synchrotron radiation have been performed upon a mixture of brucite [Mg(OH)2] and graphite as starting material. Brucite decomposes into periclase (MgO) and H2O at 3.6 GPa and 1050 °C while no periclase is formed after the decomposition of brucite at 6.2 GPa and 1150 °C, indicating that the solubility of the MgO component in H2O greatly increases with increasing pressure. The conversion of graphite to diamond in aqueous fluid has been observed at 7.7 GPa and 1835 °C. Time-dependent X-ray diffraction profiles for this transformation have been successfully obtained. Received: 17 July 2001 / Accepted: 18 February 2002  相似文献   

8.
 The cation distribution of Co, Ni, and Zn between the M1 and M2 sites of a synthetic olivine was determined with a single-crystal diffraction method. The crystal data are (Co0.377Ni0.396Zn0.227)2SiO4, M r  = 212.692, orthorhombic, Pbnm, a = 475.64(3), b = 1022.83(8), and c = 596.96(6) pm, V = 0.2904(1) nm3, Z = 4, D x  = 4.864 g cm−3, and F(0 0 0) = 408.62. Lattice, positional, and thermal parameters were determined with MoKα radiation; R = 0.025 for 1487 symmetry-independent reflections with F > 4σ(F). The site occupancies of Co, Ni, and Zn were determined with synchrotron radiation employing the anomalous dispersion effect of Co and Ni. The synchrotron radiation data include two sets of intensity data collected at 161.57 and 149.81 pm, which are about 1 pm longer than Co and Ni absorption edges, respectively. The R value was 0.022 for Co K edge data with 174 independent reflections, and 0.034 for Ni K edge data with 169 reflections. The occupancies are 0.334Co + 0.539Ni + 0.127Zn in the M1 sites, and 0.420Co + 0.253Ni + 0.327Zn in the M2 sites. The compilation of the cation distributions in olivines shows that the distributions depend on ionic radii and electronegativities of constituent cations, and that the partition coefficient can be estimated from the equation: ln [(A/B)M1/(A/B)M2] = −0.272 (IR A -IR B ) + 3.65 (EN A EN B ), where IR (pm) and EN are ionic radius and electronegativity, respectively. Received: 8 April 1999 / Revised, accepted: 7 September 1999  相似文献   

9.
The first pressure derivatives of the second-order elastic constants have been calculated for brucite, Mg(OH)2 from the second- and third-order elastic constants. The deformation theory and finite strain elasticity theory have been used to obtain the second- and third-order elastic constants of Mg(OH)2 from the strain energy of the lattice. The strain energy ϕ is calculated by taking into account the interactions up to third nearest neighbors in the Mg(OH)2 lattice. ϕ is then compared with the strain dependent lattice energy from continuum model approximation to obtain the expressions of elastic constants. The complete set of six second-order elastic constants C IJ of brucite exhibits large anisotropy. Since C 33 (= 21.6 GPa), which corresponds to the strength of the material along the c-axis direction, is less than the longitudinal mode C 11 (= 156.7 GPa), the interlayer binding forces are weaker than the binding forces along the basal plane of Mg(OH)2. The 14 nonvanishing components of the third-order elastic constants, C IJK , of brucite have been obtained. All the C IJK of brucite are negative except the values of C 114 (= 230.36 GPa), C 124 (= 75.45 GPa) and C 134 (= 36.98 GPa). The absolute values of the C IJK are, in general, one order of magnitude greater than the C IJ ’s in the Mg(OH)2 system as usually expected for a crystalline material. To our knowledge, no previous data are available to compare the pressure derivatives of brucite. The pressure derivatives of the two components viz., C 14 and C 33 become negative indicating an elastic instability in brucite while under pressure. This may be related to the phase transition of brucite largely involving rearrangements of H atoms revealed in the Raman spectroscopic, powder neutron diffraction and synchrotron X-ray diffraction studies.  相似文献   

10.
 Two MgAl2O4 stoichiometric spinel crystals, one natural and one synthetic, were heated from 25 to 950 °C and studied in situ by single-crystal X-ray diffraction. The natural crystal, quenched from 850 °C, was further heated and cooled. Thermal expansion was characterized, and cation partitioning at the various temperatures was determined according to a model purposely constructed for high-temperature bond lengths. It was found that the structural evolution of the samples with temperature depended on order–disorder at room temperature. At the temperatures lower than the beginning of cation exchange, thermal expansion was completely reversible and the oxygen coordinate remained stable in spite of varying temperatures. At the temperature at which cation exchange starts, the disordered samples first tend to order and then to disorder at higher temperatures, at variance with the ordered sample, which tends to disorder steadily. In general, the evolution of the spinel structural state on cooling and heating over the same temperature range and the same time intervals does not follow the same path. In particular, in the 600–950 °C range, only partially reversible order–disorder processes occurred in the time span used for the experiments. Received: 16 July 2001 / Accepted: 8 January 2002  相似文献   

11.
 Synthetic Zn-ferrite (ideally ZnFe2O4; mineral name: franklinite) was studied up to 37 GPa, by X-ray powder diffraction at ESRF (Grenoble, France), on the ID9 beamline; high pressure was achieved by means of a DAC. The P-V equation of state of franklinite was investigated using the Birch-Murnaghan function, and the elastic properties thus inferred [K0 = 166.4(±3.0) GPa K0  = 9.3(±0.6) K0  = −0.22 GPa−1] are compared with earlier determinations for MgAl-spinel and magnetite. The structural behaviour of Zn-ferrite as a function of pressure was studied by Rietveld refinements, and interpreted in the light of a phase transition from spinel to either CaTi2O4- or MnFe2O4-like structure; this transformation occurs above 24 GPa. Received: 15 March 1999 / Accepted: 22 April 2000  相似文献   

12.
Classical atomistic simulation techniques have been used to investigate the energies of hydrogen defects in Mg2SiO4 and Mg2GeO4 spinels. Ringwoodite (γ-Mg2SiO4) is considered to be the most abundant mineral in the lower part of the transition zone and can incorporate large amounts of water in the form of hydroxyls, whereas the germanate spinel (γ-Mg2GeO4) corresponds to a low-pressure structural analogue for ringwoodite. The calculated defect energies indicate that the most favourable mechanisms for hydrogen incorporation are coupled either with the reduction of ferric iron or with the creation of tetrahedral vacancies. Hydrogen will go preferentially into tetrahedral vacancies, eventually leading to the formation of the hydrogarnet defect, before associating with other negatively charged point defects. The presence of isolated hydroxyls is not expected. The same trend is observed for germanate, and thus γ-Mg2GeO4 could be used as a low-pressure analogue for ringwoodite in studies of water-related defects and their effect on physical properties.  相似文献   

13.
A generalized X-ray scattering factor model experimental electron density distribution has been generated for the orthosilicate forsterite, using an essentially extinction and absorption free set of single crystal diffraction data recorded with intense, high energy synchrotron X-ray radiation (E=100.6 keV). A refinement of the model converged with an R(F)=0.0061. An evaluation of the bond critical point, bcp, properties of the distribution at the (3, –1) stationary points for the SiO and MgO bonded interactions, yielded values that agree typically within ~5%, on average, with theoretical values generated with quantum chemical computational strategies, using relatively robust basis sets. On the basis of this result, the modeling of the experimental distribution is considered to be adequate. As the bcp properties increase in magnitude, the MgO and SiO bonds decrease in length as calculated for a number of rock forming silicates. As asserted by Coppens (X-ray charge densities and chemical bonding. Oxford University Press, Oxford, 1997), large negative 2(rc) values, characteristic of shared interactions involving first row atoms, may not be characteristic of closed shell covalent bonded interactions involving second row Si, P and S atoms bonded to O. This study adds new evidence to the overall relatively good agreement between theoretical bcp properties generated with computational quantum strategies, on the one hand, and experimental properties generated with single crystal high energy synchrotron diffraction data on the other. The similarity of results not only provides a basis for using computational strategies for studying and modeling structures, defects and the reactivity of representative structures, but it also provides a basis for improving our understanding of the crystal chemistry of earth materials and the character of the SiO bonded interaction.  相似文献   

14.
A natural Ca-rich pigeonite (En47Fs43Wo10), free of augite exsolution products, was studied by in situ high-temperature single-crystal X-ray diffraction. The sample, monoclinic P2 1 /c (a=9.719(7) Å, b=8.947(9) Å, c=5.251(3) Å, β=108.49(5), V=433.0(6) Å3), was annealed up to 1000 °C to induce a phase transition from P2 1 /c to C2/c symmetry. Complete single-crystal X-ray diffraction data collections were carried out in situ at 650, 750, 850 and 950 °C after the crystal had reached equilibrium for the Fe–Mg intracrystalline exchange reaction at each temperature. The variation, with increasing temperature, of lattice parameters, of intensity of hkl reflections with h + k=2n + 1 (which vanish at high temperature) and of some geometrical parameters from structure refinement, showed that the displacive phase transition P2 1 /c?C2/c was continuous in character. This contrasts with the first-order character for the HT phase transition in pigeonite containing significantly less calcium.  相似文献   

15.
We have determined the P-V equation of state of Al-rich H-bearing SiO2 stishovite by X-ray powder diffraction at pressures up to 58 GPa using synchrotron radiation. The sample contained 1.8 wt% Al2O3 and up to 500 ppm H2O, and had a composition that would coexist with Mg-silicate perovskite in a subducted slab. By fitting a third-order Birch-Murnaghan equation of state to our compression data, we obtained a bulk modulus K T0=298(7) GPa with K′=4.3(5). With K′ fixed to a value of 4, the bulk modulus K T0=304(3) GPa. Our results indicate that Al3+ and H+ have a small effect on the elastic properties of stishovite. Compared with data obtained up to 43.8 GPa, peak intensities changed and we observed a decreased quality of fit to a tetragonal unit cell at pressures of 49 GPa and higher. These changes may be an indication that the rutile↔CaCl2 transition occurs between these pressures. After laser annealing of the sample at 58.3(10) GPa and subsequent decompression to room conditions, the cell volume is the same as before compression, giving strong evidence that the composition of the recovered sample is also unchanged. This suggests that Al and H are retained in the sample under extreme P-T conditions and that stishovite can be an agent for transporting water to the deepest lower mantle.  相似文献   

16.
In situ X-ray diffraction measurements of KAlSi3O8-hollandite (K-hollandite) were performed at pressures of 15–27 GPa and temperatures of 300–1,800 K using a Kawai-type apparatus. Unit-cell volumes obtained at various pressure and temperature conditions in a series of measurements were fitted to the high-temperature Birch-Murnaghan equation of state and a complete set of thermoelastic parameters was obtained with an assumed K300,0=4. The determined parameters are V 300,0=237.6(2) Å3, K 300,0=183(3) GPa, (?K T,0/?T) P =?0.033(2) GPa K?1, a 0=3.32(5)×10?5 K?1, and b 0=1.09(1)×10?8 K?2, where a 0 and b 0 are coefficients describing the zero-pressure thermal expansion: α T,0 = a 0 + b 0 T. We observed broadening and splitting of diffraction peaks of K-hollandite at pressures of 20–23 GPa and temperatures of 300–1,000 K. We attribute this to the phase transitions from hollandite to hollandite II that is an unquenchable high-pressure phase recently found. We determined the phase boundary to be P (GPa)=16.6 + 0.007 T (K). Using the equation of state parameters of K-hollandite determined in the present study, we calculated a density profile of a hypothetical continental crust (HCC), which consists only of K-hollandite, majorite garnet, and stishovite with 1:1:1 ratio in volume. Density of HCC is higher than the surrounding mantle by about 0.2 g cm?3 in the mantle transition zone while this relation is reversed below 660-km depth and HCC becomes less dense than the surrounding mantle by about 0.15 g cm?3 in the uppermost lower mantle. Thus the 660-km seismic discontinuity can be a barrier to prevent the transportation of subducted continental crust materials to the lower mantle and the subducted continental crust may reside at the bottom of the mantle transition zone.  相似文献   

17.
18.
 The crystal structure of MgFe2O4 was investigated by in situ X-ray diffraction at high pressure, using YAG laser annealing in a diamond anvil cell. Magnesioferrite undergoes a phase transformation at about 25 GPa, which leads to a CaMn2O4-type polymorph about 8% denser, as determined using Rietveld analysis. The consequences of the occurrence of this dense MgFe2O4 form on the high-pressure phase transformations in the (MgSi)0.75(FeIII)0.5O3 system were investigated. After laser annealing at about 20 GPa, we observe decomposition to two phases: stishovite and a spinel-derived structure with orthorhombic symmetry and probably intermediate composition between MgFe2O4 and Mg2SiO4. At pressures above 35 GPa, we observe recombination of these products to a single phase with Pbnm perovskite structure. We thus conclude for the formation of Mg3Fe2Si3O12 perovskite. Received: 27 March 2000 / Accepted: 1 October 2000  相似文献   

19.
We conducted high-pressure phase equilibrium experiments in the systems MgSiO3 with 15 wt% H2O and Mg2SiO4 with 5 wt% and 11 wt% H2O at 20 ∼ 27 GPa. Based on the phase relations in these systems, together with the previous works on the related systems, we have clarified the stability relations of dense hydrous magnesium silicates in the system MgO-SiO2-H2O in the pressure range from 10 to 27 GPa. The results show that the stability field of phase G, which is identical to phase D and phase F, expands with increasing water contents. Water stored in serpentine in the descending cold slabs is transported into depths greater than 200 km, where serpentine decomposes to a mixture of phase A, enstatite, and fluid. Reaction sequences of the hydrous phases which appear at higher pressures vary with water content. In the slabs with a water content less than about 2 wt%, phase A carries water to a depth of 450 km. Hydrous wadsleyite, hydrous ringwoodite, and ilmenite are the main water reservoirs in the transition zone from 450 to 660 km. Superhydrous phase B is the water reservoir in the uppermost part of the lower mantle from 670 to 800 km, whereas phase G appears in the lower mantle only at depths greater than 800 km. In cold slabs with local water enrichment greater than 2 wt%, the following hydrous phases appear with increasing depths; phase A to 450 km, phase A and phase G from 450 km to 550 km, brucite, superhydrous phase B, and phase G from 550 km to 800 km, and phase G at depths greater than 800 km. Received: 4 August 1999 / Accepted: 1 March 2000  相似文献   

20.
Thermal behaviour and kinetics of dehydration of gypsum in air have been investigated using in situ real-time laboratory parallel-beam X-ray powder diffraction data evaluated by the Rietveld method. Thermal expansion has been analysed from 298 to 373 K. The high-temperature limits for the cell edges and for the cell volume, calculated using the Einstein equation, are 4.29 × 10−6, 4.94 × 10−5, 2.97 × 10−5, and 8.21 × 10−5. Thermal expansion of gypsum is strongly anisotropic being larger along the b axis mainly due to the weakening of hydrogen bond. Dehydration of gypsum has been investigated in isothermal conditions within the 348–403 K range with a temperature increase of 5 K. Dehydration proceeds through the CaSO4·2H2O → CaSO4·0.5H2O → γ-CaSO4 steps. Experimental data have been fitted with the Avrami equation to calculate the empirical activation energy of the process. No change in transformation mechanism has been observed within the analysed temperature range and the corresponding E a is 109(12) kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号