共查询到20条相似文献,搜索用时 31 毫秒
1.
Norm Sleep suggests that it is premature to toss the concept of mantle plumes into the dustbin. The hypothesis yields testable predictions about the geological phenomena of hotspots. 相似文献
2.
Magnetic reversal frequency correlates inversely with mantle plume activity for the past 150 Ma, as measured by the volume production rate of oceanic plateaus, seamount chains, and continental flood basalts. This inverse correlation is especially striking during the long Cretaceous magnetic normal “superchron”, when mantle plume activity was at a maximum. We suggest that mantle plumes control magnetic reversal frequency by the following sequence of events. Mantle plumes rise from the D″ seismic layer just above the core/mantle boundary, thinning D″ to fuel the plumes. This increases core cooling by allowing heat to be conducted more rapidly across the core/mantle boundary. Outer core convective activity then increases to restore the abnormal heat loss, causing a decrease in magnetic reversal frequency in accord with model predictions for both α2 and αω dynamos. When core convective activity increases above a critical level, a magnetic superchron results. The pulse of plume activity that caused the Cretaceous superchron resulted in a minimum increase in core heat loss of about 1200 GW over the present-day level, which corresponds to an increase in Joule heat production of about 120 GW within the core. 相似文献
4.
The process of multiple self-nucleation and ascent of mantle plumes is studied in the numerical models of thermal convection.
The plumes are observed even in the simplest isoviscous models of thermal convection that leave aside the more complex rheology
of the material, thermochemical effects, phase transformations, etc., which, although controlling the features of plumes,
are not necessary for their formation. The origin of plumes is mainly due to the instability of the mantle flows at highly
intense (low-viscous) thermal convection. At high viscosity, convective flows form regular cells. As viscosity decreases,
the ascending and descending flows become narrower and unsteady. At a further decrease in viscosity, the ascending plumes
assume a mushroom-like shape and occasionally change their position in the mantle. The lifetime of each flow can attain 100
Ma. Using markers allows visualizing the evolution of the shape of the mantle plumes. 相似文献
5.
The four most recent large mass extinction events in the Phanerozoic – the Cretaceous–Tertiary (KT), the Triassic–Jurassic (TJ), and the Permo-Triassic (PT) and Guadalupian–Tatarian (GT) doublet – are associated with a major flood basalt eruption, with the timing of peak volcanic activity corresponding within measurement uncertainties to the extinction event. Three magnetic superchrons precede the four largest Phanerozoic extinctions. The Cretaceous Long Normal Superchron (duration 35 Myr) precedes the KT and the Permian Kiaman Long Reversed Superchron ( 50 Myr) precedes the PT–GT doublet. In addition, the newly recognized Ordovician Moyero Long Reversed Superchron ( 30 Myr) precedes the end-Ordovician extinction event. There is a 10–20 Myr delay between the end of each superchron and the subsequent mass depletion event, both of which represent distant outliers from their respective populations. We propose that deep mantle plumes link these seemingly unrelated phenomena. Long-term ( 200 Myr) variations in mantle convection possibly associated with the Wilson cycle induce temporal and spatial variations in heat flow at the core–mantle boundary. Polarity reversals are frequent when core heat flow is high and infrequent when it is low. Thermal instabilities in the D”-layer of the mantle increase core heat flow, end the magnetic superchron, and generate deep mantle plumes. The plumes ascend through the mantle on a 20 Myr time scale, producing continental flood basalt (trap) eruptions, rapid climatic change, and massive faunal depletions. 相似文献
6.
The most accurate method of digitizing a resistance requires that a bridge be brought to null balance by means of digital steps. Satisfactory circuits of reasonable complexity require irregular electrical dissipation in the sensors, and a relatively wide frequency bandwidth in the detector. This combination places considerably greater demands on sensor quality than do conventional electromechanical recorders, and this has been strikingly confirmed during the initial use at sea of a newly developed digital resistance recorder with a sensitivity of 10 ?5. Mounted on a coring tool, with miniature outrigger sensors to measure geothermal gradients in the pelagic sediment, the recorder produces sensor readings with considerable scatter even when the sensor probes are buried in sediment. These contrast sharply to the steady reading of the calibration arm. An additional symptom with some sensors is the shunning of certain numbers in the low decades of the digital readings. The reading scatter varies sharply among different sensor types and can be satisfactorily explained by the production of a high level of white noise when the sensors are biased with excitation current. No adequate explanation has been found for the preferential reading of certain numbers, and it is necessary to speculate about obscure contact effects in those sensors. 相似文献
8.
Along the two volcanic off-rift zones in Iceland, the Snfellsnes volcanic zone (SNVZ) and the South Iceland volcanic zone (SIVZ), geochemical parameters vary regularly along the strike towards the centre of the island. Recent basalts from the SNVZ change from alkali basalts to tholeiites where the volcanic zone reaches the active rift axis, and their 87Sr/86Sr and Th/U ratios decrease in the same direction. These variations are interpreted as the result of mixing between mantle melts from two distinct reservoirs below Snfellsnes. The mantle melt would be more depleted in incompatible elements, but with a higher 3He/4He ratio ( R/Ra≈ 20) beneath the centre of Iceland than at the tip of the Snfellsnes volcanic zone ( R/Ra≈ 7.5). From southwest to northeast along the SIVZ, the basalts change from alkali basalts to FeTi basalts and quartz-normative tholeiites. TheTh/U ratio of the Recent basalts increases and both (230Th/232Th) andδ18O values decrease in the same direction. This reflects an important crustal contamination of the FeTi-rich basalts and the quartz tholeiites. The two types of basalts could be produced through assimilation and fractional crystallization in which primary alkali basaltic and olivine tholeiitic melts ‘erode’ and assimilate the base of the crust. The increasingly tholeiitic character of the basalts towards the centre of Iceland, which reflects a higher degree of partial melting, is qualitatively consistent with increasing geothermal gradient and negative gravity anomaly. The highest Sr isotope ratio in Recent basalts from Iceland is observed inÖrfajökull volcano, which has a3He/4He ratio (R/Ra≈ 7.8) close to the MORB value, and this might represent a mantle source similar to that of Mauna Loa in Hawaii. 相似文献
9.
Deep-sea measurements of geothermal heat flow sometimes show a larger scatter within an area than is usual for continental measurements. Accurate records of deep-sea (greater than 4500 m) temperatures, near the sea floor, are used to show that these local variations in heat flow are unlikely to be due to temperature variations in the bottom water. Temperature measurements made at shallower depths over extended periods, by gauges deployed for tidal studies, are also considered. At two stations (2200 m and 3022 m) monthly temperature changes would produce significant gradients to a depth of 1 m into the sediments. Longer-period temperature variations can affect measured heat flow to much greater depths of penetration, and present evidence is insufficient to exclude the possibility. 相似文献
10.
Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity. 相似文献
11.
—A brief outline is given on experimental studies carried out in the Minnesota Mineral and Rock Physics Laboratory of microstructural evolution and rheology of mantle mineral aggregates or their analogues, using a simple shear deformation geometry. A simple shear deformation geometry allows us to unambiguously identify controlling factors of microstructural evolution and to obtain large strains at high pressures and temperatures, and thus provides a unique opportunity to investigate the "structural geology of the mantle." We have developed a simple shear deformation technique for use at high pressures and temperatures (pressure up to 16 GPa and temperature up to 2000 K) in both gas-medium and solid-medium apparati. This technique has been applied to the following mineral systems (i) olivine aggregates, (ii) olivine basaltic melt, (iii) CaTiO 3 perovskite aggregates. The results have provided important data with which to understand the dynamics of the earth’s mantle, including the geometry of mantle convection, mechanisms of melt distribution and migration beneath mid-ocean ridges, and the mechanisms of shear localization. Limitations of laboratory studies and future directions are also discussed. 相似文献
12.
Geochemical models invoking several distinct reservoirs in the mantle, with different time histories, raise important questions about the exchange of mass between them. If two of these reservoirs are the upper and lower mantle, above and below about 700 km, then sinking of cold slabs through this level is one of a number of possible ways in which mixing can occur. In addition, if slabs do penetrate the transition zone, surrounding upper layer material will be dragged downwards. We have examined the interaction of very viscous plumes, or slabs, with density and viscosity interfaces in a series of laboratory experiments using fluids of different viscosities and densities and have documented several mechanisms which can lead to significant entrainment and mixing. If a slab remains planar as it passes through a density interface, a boundary layer of lighter fluid is pulled into the lower layer and we predict the consequent mass flux. When a near-vertical slab becomes unstable to folding (as it does if it has a sufficient viscosity contrast with its surroundings and its length is greater than about five times its thickness), there is another more efficient entrainment mechanism: upper layer fluid is trapped between the folds in the slab. The effective entrainment increases as the density difference between the upper and lower layers decreases. An increase in viscosity with depth also leads to buckling instability and folding of the surrounding material into the slab material. On the other hand, when there is substantial density difference between the layers a dense slab can cease to sink through the interface but spread out along the interface because it is unstable and incorporates enough upper layer fluid between its folds to become neutrally buoyant. The range of slab behaviour occurring in the mantle is not known but we draw attention to the various possibilities and to the implications for mass flux between layers. 相似文献
13.
We have developed a new theoretical model of an eruption column that accounts for the re-entrainment of particles as they fall out of the laterally spreading umbrella cloud. The model illustrates how the mass flux of particles in the plume may increase with height in the plume, by a factor as large as 2.5 because of this recycling. Three important consequences are that (1) the critical velocity required to generate a buoyant eruption column for a given mass flux increases, (2) the total height of rise of the column may decrease, and (3) we infer that in relatively wind-free environments, for eruption columns near the conditions for collapse, the recycling of particles may lead to an unsteady oscillating motion of the plume, which, in time, may lead to the formation of interleaved fall and flow deposits. 相似文献
15.
Stormwater runoff plumes, municipal wastewater plumes, and natural hydrocarbon seeps are important pollution hazards for the heavily populated Southern California Bight (SCB). Due to their small size, dynamic and episodic nature, these hazards are difficult to sample adequately using traditional in situ oceanographic methods. Complex coastal circulation and persistent cloud cover can further complicate detection and monitoring of these hazards. We use imagery from space-borne synthetic aperture radar (SAR), complemented by field measurements, to examine these hazards in the SCB. The hazards are detectable in SAR imagery because they deposit surfactants on the sea surface, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with the surrounding ocean. We suggest that high-resolution SAR, which obtains useful data regardless of darkness or cloud cover, could be an important observational tool for assessment and monitoring of coastal marine pollution hazards in the SCB and other urbanized coastal regions. 相似文献
16.
The geochemical study of the Earth's mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts(OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e.,the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial,ranging from unprocessed(or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186 Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142 Nd, 182 W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth's mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection. 相似文献
17.
Hydrofracturing stress measurements have been carried out to about 0.4 km in two boreholes in Quaternary volcanic rocks in Reykjavik, Iceland, on the flank of the Reykjanes-Langjökull continuation of the Mid-Atlantic Ridge. The measurements indicate a dominant orientation of H max approximately perpendicular to the axial rift zone, in contrast to earthquake focal mechanism solutions from within the axial rift zone of the Reykjanes Peninsula. In one hole (H32) a depth-dependent change in stress orientation is indicated, with 1 horizontal above a depth of about 0.25 km, and vertical below it; however the orientation of H max remains unchanged. The data thus suggest reconciliation of an apparent conflict between the dominantly compressive indications of shallow overcoring stress measurements and dominant extension as required by focal mechanism solutions. The measured stresses are supported by the more reliable of overcoring measurements from southeast Iceland, and by recent focal mechanism solutions for the intraplate Borgarfjördur area. A fundamental change in crustal stresses appears therefore to occur as a function of distance from the axis of the axial rift zone. The data seem reasonably explicable in terms of a combination of thermoelastic mechanisms associated with accretion and cooling of spreading lithosphere plates. Stresses directly associated with the driving mechanisms of plate tectonics apparently do not dominate the observed stress pattern. 相似文献
18.
Analyses of stable isotope ratios of chlorine and oxygen in perchlorate can, in some cases, be used for mapping and source identification of groundwater perchlorate plumes. This is demonstrated here for large, intersecting perchlorate plumes in groundwater from a region having extensive groundwater perchlorate contamination and a large population dependent on groundwater resources. The region contains both synthetic perchlorate derived from rocket fuel manufacturing and testing activities and agricultural perchlorate derived predominantly from imported Chilean (Atacama) nitrate fertilizer, along with a likely component of indigenous natural background perchlorate from local wet and dry atmospheric deposition. Most samples within each plume reflect either a predominantly synthetic or a predominantly agricultural perchlorate source and there is apparently a minor contribution from the indigenous natural background perchlorate. The existence of isotopically distinct perchlorate plumes in this area is consistent with other lines of evidence, including groundwater levels and flow paths as well as the historical land use and areal distribution of potential perchlorate sources. 相似文献
|