首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A general method for estimating ground-water solute mass transfer rate parameters from field test data is presented. The method entails matching solute concentration and hydraulic head data collected during the recovery phase of a pumping test through application of a simulation-regression technique. Estimation of hydraulic conductivity and mass transfer rate parameter values is performed by fitting model simulations to the data. Parameter estimates are utilized to assess cleanup times for pump-and-treat aquifer remediation scenarios. Uncertainty in the cleanup time estimate is evaluated using statistical information obtained with the parameter estimation technique. Application of the method is demonstrated using a hypothetical ground-water flow and solute transport system. Simulations of field testing, parameter estimation, and remedial time frames are performed to evaluate the usefulness of the method. Sets of random noise that signify potential field and laboratory measurement errors are combined with the hypothetical data to provide rigorous testing of the method. Field tests are simulated using ranges of values for data noise, the mass transfer rate parameters, the test pumping rates, and the duration of recovery monitoring to evaluate their respective influence on parameter and cleanup time estimates. The demonstration indicates the method is capable of yielding accurate estimates of the solute mass transfer rate parameters. When the parameter values for the hypothetical system are well estimated, cleanup time predictions are shown to be more accurate than when calculated using the local equilibrium assumption.  相似文献   

2.
Soil depth and soil production are highly complicated phenomena, generated from a complex interaction of physical, biological and chemical processes. It has, nevertheless, become increasingly clear that soil formation rates are closely related to chemical weathering rates. Somewhat paradoxically, it is likewise becoming apparent that such biogeochemical reactions as slowly transform rock to soil are limited by physical processes, such as flowing water and the formation of fractures. We have formulated a theoretical approach that relates soil formation rates to chemical weathering rates, and those, likewise, to solute transport rates. For such a theoretical framework to be relevant, the solute transport rates cannot equal those of the flowing water, as is the case in Gaussian solute transport. Rather, solute transport must be slowed in accordance with heavy‐tailed solute arrival time distributions. The inference is that the traditional advection–dispersion equation formulation for solute transport is inadequate in the typically heterogeneous geological media that weather to form soils. Here we examine the implications of this soil production model on the assumption of the approach to steady state. Particularly at slow erosion rates we find that many soil columns are not in equilibrium. This tendency may be accentuated in dry climates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of “dual mode” sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including “dual mode” and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.  相似文献   

4.
Laboratory Experiments for Describing the Migration of Explosives in Sandy Aquifers Leaching the munition residues from the former explosive production site Elsnig in the Upper Elbe Valley (Saxony, Germany) resulted in an undefined plume of groundwater contaminated by nitroaromatics and nitroamines approaching important drinking water resources. Laboratory experiments were carried out to investigate transport and fate phenomena of such substances in aquifer materials. Specific solute storage and migration parameters for modelling the subsurface migration processes were obtained from steady state experiments in soil cores used as 0-dimensional reactors and from dynamic breakthrough curves in soil columns. Using the 0-dimensional reactor tests we focused on isotherm estimation. Sorption was found to be reflected best by Freundlich isotherms for concentrations of nitroaromatics less than 10 mg L?1 and low organic carbon content in the tested subsurface material. TNT-adsorption was slow and strongly correlated with soil permeability. Preliminary kinetic measurements revealed sorption equilibrium after two days. RDX-adsorption was low. All sorption experiments were conducted under non-sterile and aerobic conditions. Microbial activity was controlled by measuring the enzyme activity and the biomass in water and soil samples. After steady state experiments in the 0-dimensional reactors, products initiated by biodegradation of explosives such as aminonitrotoluenes were found. Based on literature, degradation was estimated and correlated with soil texture. For five components, different retardation was observed depending on soil texture by using native groundwater samples in the columns. Specially designed reactor facilities and soil column installations with temperature and flux control as well as on-line measurements of pH, pE, and conductivity were applied. Concentrations of contaminants were analysed both by high performance liquid chromatography and thin layer chromatography. Photolytic reactions have been prevented. Based on all these laboratory experiments, sorption, degradation, and retardation parameters of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), dinitrobenzene (DNB), dinitrotoluene (DNT), and mononitrotoluene (MNT) in Elsnig sandy aquifers were estimated.  相似文献   

5.
6.
In this study, a generalized contaminant retardation factor applicable to a multiphase system where various types of colloids exist simultaneously with contaminants is derived and incorporated into an equilibrium model which is successfully applied to experimental data for which phenanthrene was used as hydrophobic organic contaminants and dissolved organic matter (DOM) or bacteria as mobile carriers. Based on the parameter values for the experimental data regarding the association of phenanthrene with solid matrix, DOM and various bacterial isolates, numerical experiments are performed to examine the transport behaviour of hydrophobic organic contaminants in various types of the multiphase system. Numerical experiments demonstrate that the extent of contaminant transport enhancement depends on the adsorption affinity of the colloid, its concentration and its mobility, and that the importance of a third phase to contaminant transport needs to be evaluated carefully with respect to the relevance of experimental conditions applied to realistic environmental conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
It is evident that the hydrodynamic dispersion coefficient and linear flow velocity dominate solute transport in aquifers. Both of them play important roles characterizing contaminant transport. However, by definition, the parameter of contaminant transport cannot be measured directly. For most problems of contaminant transport, a conceptual model for solute transport generally is established to fit the breakthrough curve obtained from field testing, and then suitable curve matching or the inverse solution of a theoretical model is used to determine the parameter. This study presents a one-dimensional solute transport problem for slug injection. Differential analysis is used to analyze uncertainty propagation, which is described by the variance and mean. The uncertainties of linear velocity and hydrodynamic dispersion coefficient are, respectively, characterized by the second-power and fourth-power of the length scale multiplied by a lumped relationship of variance and covariance of system parameters, i.e. the Peclet number and arrival time of maximum concentration. To validate the applicability for evaluating variance propagation in one-dimensional solute transport, two cases using field data are presented to demonstrate how parametric uncertainty can be caught depending on the manner of sampling.  相似文献   

8.
Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system’s parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme.  相似文献   

9.
The CPqPy framework coupling COMSOL and PHREEQC based on Python was developed. This framework can achieve the simulation of diversified situations including multi-physics coupling and geochemical reactions of soil and groundwater. The multi-physics coupling models are calculated in COMSOL, whereas PHREEQC was applied to calculate the geochemical models through the Phreeqpy library in Python. Feasibility and accuracy of CPqPy were verified and applied to two cases, including a solute transport model considering equilibrium reaction and ion exchange as well as a reactive transport model of a variable saturation soil considering kinetic reaction. The results show a high degree of credibility of CPqPy. The framework has the advantages of strong portability, and it can be further used in conjunction with multiple Python calculation libraries, which greatly extends the application of the reactive transport model.  相似文献   

10.
This paper presents a formulation accounting for the effect of delayed drainage phenomenon (DDP) on the breakthrough of contaminant flux in an aquitard, by considering the movement of soil particles, porosity variation, hydraulic head variation, and transient flow during the consolidation. The water flow equation in an aquitard was based on the Terzaghi's consolidation theory, and the contaminant transport equation was derived on the basis of the mass balance law. Two cases were used to illustrate the effect of DDP on the contaminant transport in an aquitard of small deformation. It is found that the breakthrough time of contaminant in an aquitard is very long, which is mainly ascribed to the low permeability of aquitard and sorption of soil particles. It is also found that the increase of depletion, which is in general induced by the increase of thickness and specific storativity and the decrease of hydraulic conductivity, enhances the impact of DDP on the contaminant transport in an aquitard. A larger delay index (τ0) of DDP gives a greater delay breakthrough time (DBT) of solute transport in an aquitard, which controls the difference of the breakthrough time of contaminant transport in aquitards with and without the occurrence of DDP. For the cases where advection plays a dominant role during the process of solute transport, τ0 is almost linearly correlated with DBT, and the ratio of DBT over the breakthrough time without consideration of DDP also approximately shows a linear relationship with the ratio of specific storativity to porosity, given a fixed drawdown in the adjacent aquifer with the sorption being ignored.  相似文献   

11.
Uptake of Dissolved and Oil Phase Organic Chemicals by Bacteria   总被引:1,自引:0,他引:1  
Hydrophobic organic chemicals (HOCs) discharged into soil and ground water will partition into gaseous, aqueous, oil, and sorbed phases. Knowledge of how bacteria assimilate HOCs is important to individuals involved in evaluating intrinsic, or engineered, bioremediation. The majority of bacteria isolated from the subsurface are gram-negative. The outer membrane of gram-negative organisms acts as a selective barrier to many solutes, including hydrophobic chemicals. Thus, diffusional transport of a hydrophobic solute through the outer membrane may be the rate-limiting step in biodegradation. Bacteria may also produce biosurfactants that can facilitate cell-oil contact or assist solubilization of oil and sorbed phases.  相似文献   

12.
It has been hypothesized that many soil profiles reach a steady‐state thickness. In this work, such profiles were simulated using a one‐dimensional model of reaction with advective and diffusive solute transport. A model ‘rock’ is considered, consisting of albite that weathers to kaolinite in the presence of chemically inert quartz. The model yields three different steady‐state regimes of weathering. At the lowest erosion rates, a local‐equilibrium regime is established where albite is completely depleted in the weathering zone. This regime is equivalent to the transport‐limited regime described in the literature. With an increase in erosion rate, transition and kinetic regimes are established. In the transition regime, both albite and kaolinite are present in the weathering zone, but albite does not persist to the soil–air interface. In the weathering‐limited regime, here called the kinetic regime, albite persists to the soil–air interface. The steady‐state thickness of regolith decreases with increasing erosion rate in the local equilibrium and transition regimes, but in the kinetic regime, this thickness is independent of erosion rate. Analytical expressions derived from the model are used to show that regolith production rates decrease exponentially with regolith thickness. The steady‐state regolith thickness increases with the Darcy velocity of the pore fluid, and in the local equilibrium regime may vary markedly with small variations in this velocity and erosion rate. In the weathering‐limited regime, the temperature dependences for chemical weathering rates are related to the activation energy for the rate constant for mineral reaction and to the ΔH of dissolution, while for local equilibrium regimes they are related to the ΔH only. The model illustrates how geochemical and geomorphological observations are related for a simple compositional system. The insights provided will be useful in interpreting natural regolith profiles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Geostatistical interpolation of chemical concentration   总被引:1,自引:0,他引:1  
Measurements of contaminant concentration at a hazardous waste site typically vary over many orders of magnitude and have highly skewed distributions. This work presents a practical methodology for the estimation of solute concentration contour maps and volume averages (needed for mass calculations) from data obtained from the analysis of water and soil samples. The methodology, which is an extension of linear geostatistics, produces a point estimate, i.e., a representative value, as well as a confidence interval, which contains the true value with a given probability. The approach uses a parsimonious model that accounts for the skewness by adding only one parameter to those used in linear geostatistics (variograms or generalized covariances). The resulting nonlinear kriging method is not substantially more difficult to use than linear geostatistics. The methodology is most appropriate when concentration measurements are available on a reasonably dense grid and no additional information (based on modeling flow and transport) can be used. We present and illustrate through an application, a practical approach to estimate all the parameters needed and to select and test the model.  相似文献   

14.
Desorption is one of the most critical processes affecting the effectiveness of soil and ground water remediation. None of the currently adopted desorption models can accurately quantify desorption of low-hydrophobicity organic chemicals, and thus could potentially mislead remediation design and decision-making. A recently developed dual-equilibrium desorption (DED) model was found to be much more accurate in quantifying desorption. A screening-level transport model, DED-Transport, was developed to simulate the DED effect on behaviors of organic contaminant plumes during remediation. DED-Transport requires only simple parameters, but is applicable to many remediation scenarios. DED-Transport can be used as a decision-support tool in site remediation to more precisely predict the time required for cleanup.  相似文献   

15.
Effective long‐term operation of soil vapor extraction (SVE) systems for cleanup of vadose‐zone sources requires consideration of the likelihood that remediation activities over time will alter the subsurface distribution and configuration of contaminants. A method is demonstrated for locating and characterizing the distribution and nature of persistent volatile organic contaminant (VOC) sources in the vadose zone. The method consists of three components: analysis of existing site and SVE‐operations data, vapor‐phase cyclic contaminant mass‐discharge testing, and short‐term vapor‐phase contaminant mass‐discharge tests conducted in series at multiple locations. Results obtained from the method were used to characterize overall source zone mass‐transfer limitations, source‐strength reductions, potential changes in source‐zone architecture, and the spatial variability and extent of the persistent source(s) for the Department of Energy's Hanford site. The results confirmed a heterogeneous distribution of contaminant mass discharge throughout the vadose zone. Analyses of the mass‐discharge profiles indicate that the remaining contaminant source is coincident with a lower‐permeability unit at the site. Such measurements of source strength and size as obtained herein are needed to determine the impacts of vadose‐zone sources on groundwater contamination and vapor intrusion, and can support evaluation and optimization of the performance of SVE operations.  相似文献   

16.
A model is presented for estimating vapor concentrations in buildings because of volatilization from soil contaminated by non- aqueous phase liquids (NAPL) or from dissolved contaminants in ground water. The model considers source depletion, diffusive- dispersive transport of the contaminant of concern (COC) and of oxygen and oxygen-limited COC biodecay. Diffusive-advective transport through foundations and vapor losses caused by foundation cross-flow are considered. Competitive oxygen use by various species is assumed to be proportional to the product of the average dissolved-phase species concentration and a biopreference factor. Laboratory and field data indicate the biopreference factor to be proportional to the organic carbon partition coefficient for the fuel hydrocarbons studied. Predicted indoor air concentrations were sensitive to soil type and subbase permeability. Lower concentrations were predicted for buildings with shallow foundations caused by flushing of contaminants by cross-flow. NAPL source depletion had a large impact on average exposure concentration. Barometric pumping had a minor effect on indoor air emissions for the conditions studied. Risk-based soil cleanup levels were much lower when biodecay was considered because of the existence of a threshold source concentration below which no emissions occur. Computed cleanup levels at NAPL-contaminated sites were strongly dependent on total petroleum hydrocarbon (TPH) content and COC soil concentration. The model was applied to two field sites with gasoline-contaminated ground water. Confidence limits of predicted indoor air concentrations spanned approximately two orders of magnitude considering uncertainty in model parameters. Measured contaminant concentrations in indoor air were within model-predicted confidence limits.  相似文献   

17.
Assessment of slope stability, soil management or contaminant transport problems usually requires numerous, yet accurate point measurements of permeability. This technical note describes a new method for the rapid field assessment of permeability in near-surface soils or unconsolidated sediments. The procedure is known as ‘ring permeametry’ and is an ex situ core-based method giving measurements which can be guaranteed to be stratum-specific, unlike measurements from some in situ techniques. The potential sources of precision and bias error within the method are quantified and their effect on the uncertainty of permeability estimates is illustrated. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid‐rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult‐to‐use models. To address the need for a simple and easy‐to‐use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two‐dimensional, constant‐density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature‐dependent cation exchange. VS2DRTI is freely available public domain software.  相似文献   

19.
In this study, we tested a practical strategy useful for accurate chlorinated volatile organic compound (cVOC) sorption prediction. Corresponding to the feature of the superposition of adsorption due to thermally altered carbonaceous matter (TACM) with organic carbon‐water partitioning, a nonlinear Freundlich sorption isotherm covering a wide range of aqueous concentrations was defined by equilibrium sorption measurement at one or a few low concentration points with extrapolation to the empirical organic carbon‐water partition coefficient (Koc,e) near compound solubility. We applied this approach to obtain perchloroethene equilibrium sorption isotherm parameters for TACM‐containing glacial sand and gravel subsoil samples from a field site in New York. Sorption and associated Koc,c applicable to low (5–500 µg/L) and high (>100,000 µg/L) aqueous concentrations were determined in batch experiments. (The Koc,c is the organic carbon‐normalized sorption partition coefficient corresponding to aqueous concentration Cw.) The Koc,c measurements at low concentration (~5 µg/L) were 6 to 34 times greater than the Koc,e. The importance of this type of data is illustrated through presentation of its substantial impact on the site remedy. In so doing, we provide an approach that is broadly applicable to cVOC field sites with similar circumstances (low carbon content glacial sand and gravel with TACM).  相似文献   

20.
The measured drainage fluxes through a layered volcanic vadose zone exhibited high spatial variability as a consequence of heterogeneous flow conditions. The drainage flux variability was quantified using automated equilibrium tension lysimeters, installed in close‐proximity and resulted in high variability in the Br masses recovered from a conservative tracer experiment. The primary cause of the heterogeneous flow was attributed to textural changes occurring at the interface between volcanic layers, resulting in development of funnel‐flow patterns, and further enhanced by the existence of hydrophobic conditions. The Br recoveries in individual automated equilibrium tension lysimeters were used to determine the corresponding variable sizes of the surface areas contributing drainage to the lysimeters. The tracer experiment confirmed the existence of unsaturated lateral transport occurring at the sloping interface of the coarse Taupo Ignimbrite material with the silty Palaeosol layer at approximately 4.2 m depth. This study demonstrates that measurements of both flux and solute concentrations at multiple locations are essential when heterogeneous flow is suspected to be present, to be able to determine reliable estimates of contaminant leaching through the vadose zone at the plot scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号