首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gusakov  V. A. 《Water Resources》2001,28(1):94-104
Data on the abundance, horizontal distribution, and the seasonal dynamics of the dominant species and the entire group Cyclopoida in the meiobenthos of the open littoral and profundal of the Rybinsk Reservoir are presented. The probability that the passive and active migrations of cyclops in the reservoir are controlled by the natural (transsedimentational activity of hydrodynamic processes) and human-induced factors (artificial water level control) is discussed.  相似文献   

2.
Based on the earthquake catalog data for the Koyna–Warna region of induced seismicity in western India, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level are analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. The seasonal seismic activity is minimal in May–June when the reservoir level is lowest. During the remaining part of the year, the activity has three peaks: the fall peak in September, winter peak in November–December, and spring peak in February–March. The first mentioned peak, which falls in the phase of the water level reaching its maximal seasonal value is considered as the immediate response of the fluid saturated medium to the additional loading under the weight of reservoir water. The two subsequent maxima concur with the decline phase in the reservoir level and are interpreted as the delayed response associated with the changes in the properties of the medium due to water diffusion. It is shown that the intensities of the immediate and delayed responses to the seasonal water level variations both vary with time as does their ratio. The probable factors affecting the variations in the intensity of the seasonal components of the reservoir-induced seismicity are discussed.  相似文献   

3.
Data on the composition and content of plant pigments in water of the Cheboksary Reservoir collected in 1985–2005 are used to analyze the seasonal dynamics and spatial distribution of phytoplankton at different stages of reservoir life. A trophic burst could be distinctly seen in the reservoir in 1985, manifesting itself in exceedingly high (198 ± 41 μg/l) concentrations of photosynthetic pigment chlorophyll. In the process of ecosystem stabilization, chlorophyll concentration significantly dropped to vary from 8.2 ± 1.5 to 45.1 ± 21.0 μg/l in 1989–2005. The reservoir, located in a region subject to high anthropogenic load, has acquired the features of an eutrophic water body immediately after its creation and its trophic status remains unchanged all over its existence.  相似文献   

4.
The spatial and time dynamics are analyzed for the seasonal components of induced seismicity in the Koyna–Warna region of Western India. The peculiarities of the variations in these components are compared to the changes in the local tectonic regime inferred from the focal mechanism data of the earthquakes. Based on this, the hypotheses about the probable nature of the dynamics in the seasonal components of seismicity are suggested. It is noted that the variations in the seasonal seismic activity after the impoundment of the Koyna reservoir in the north are caused by the spatial migration of the induced seismicity and activation of the normal faults in the south. It is hypothesized that the process of fracture migration from the north to the south at this stage advanced the diffusion of the fluid from the Koyna reservoir, and as the water front reached the southern zone of normal faulting, this caused reactivation of the seasonal seismicity. An explanation is suggested for the stronger response of the seasonal activity in the region of Warna reservoir compared to the Koyna area: in contrast to Koyna, filling the Warna reservoir was geographically close to the area of activated seismicity. It is shown that the localization and sizes of the areas of the instantaneous and delayed components in the seasonal activity of the induced seismicity are determined by the localization and sizes of the areas of high stresses created by the increase in the pore pressure in highly permeable fault zones.  相似文献   

5.
Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater‐fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level–driven movement of the fresh water‐sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two‐dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater–dependent ecosystems.  相似文献   

6.
Data on the Shardarinskoe Reservoir are used to assess the indicator role of zooplankton community under unstable hydrological regime. The structural characteristics of zooplankton featured significant seasonal variations. The averaged indices characterized reservoir water quality at the level of mesotrophic and eutrophic water bodies. The possible use of cyclopidas to characterize toxic pollution of water is discussed.  相似文献   

7.
Suspended matter is an important indicator of water quality in freshwater systems. The flood‐induced turbidity current plays a dominant role in the seasonal dynamic of suspended matter in the Liuxihe Reservoir (23°45′50″N; 113°46′52″E), a large, stratified reservoir at the Tropic of Cancer in southern China. Field measurements show that loading and distribution of suspended matter in the reservoir differ in typical wet, dry and medium years, as a result of different discharge volumes and water level variation patterns. Using historical data and the practical demand for water supply and flood control, we generalized two feasible reservoir operational modes: flood impounding mode (drawing down the reservoir to a low level before flood events to impound inflow during the flooding season) and moderate level change mode (drawing down the reservoir to a moderate level before flood events, then keeping the level within the flood control level during runoff events). To examine the effects of different operational modes and outlet depths on the reservoir's flood‐induced turbidity current, a numerical simulation model was applied in three types of hydrological conditions. The results show that the mode with moderate drawdown and recharge processes can decrease loading of suspended matter in spring and promote turbidity current release during flood events, and upper withdrawal can improve the effects of turbid water release. We suggest that more attention should be focused on water quality management in the reservoir operation stage, severe artificial water level fluctuation being avoided and selective withdrawal becoming an optional management measure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

The seasonal flood-limited water level (FLWL), which reflects the seasonal flood information, plays an important role in governing the trade-off between reservoir flood control and conservation. A risk analysis model for flood control operation of seasonal FLWL incorporating the inflow forecasting error was proposed and developed. The variable kernel estimation is implemented for deriving the inflow forecasting error density. The synthetic inflow incorporating forecasting error is simulated by Monte Carlo simulation (MCS) according to the inflow forecasting error density. The risk analysis for seasonal FLWL control was estimated by MCS based on a combination of the forecasting inflow lead-time, seasonal design flood hydrographs and seasonal operation rules. The Three Gorges reservoir is selected as a case study. The application results indicate that the seasonal FLWL control can effectively enhance flood water utilization rate without lowering the annual flood control standard.
Editor D. Koutsoyiannis; Associate editor A. Viglione

Citation Zhou, Y.-L. and Guo, S.-L., 2014. Risk analysis for flood control operation of seasonal flood-limited water level incorporating inflow forecasting error. Hydrological Sciences Journal, 59 (5), 1006–1019.  相似文献   

9.
The state of the art in the geological and geophysical study of the region of Koyna and Warna water reservoirs is reviewed. The probable geodynamical factors of induced seismicity are discussed. The detailed geophysical surveys, satellite geodetic data, and time history of the seismicity in the region reveal a complicated pattern of the structure and recent geodynamics of the region. The existing data suggest that the induced seismicity is here most likely to be caused by the regional (intraplate) stresses driving the displacements along the orthogonal network of the faults whose strength has dropped and continues decreasing due to the reservoir impoundment and operation processes. The evolution of the seismicity which started immediately after the rapid filling of the Koyna reservoir in the region of the dam, then rapidly expanded southwards and eventually became concentrated in the region of the subsequently constructed Warna reservoir shows that seismic events can be initiated by a number of factors whose contributions may vary with time. The key ones among them include reservoir loading and its seasonal variations; water saturation of the faults which guide the propagation of the front of fracture, increased permeability, and, probably, mineral transformations (hydrolysis) under the water level fluctuations in the reservoirs; and displacement of the front of the high pore pressure down to the main source zone of the earthquakes at a depth of 6–8 km. Based on the analysis presented in the paper, we outline the directions of the future research aimed at studying the nature and dynamics of induced seismicity in the region of large water reservoirs.  相似文献   

10.
Space monitoring of Aral Sea degradation   总被引:1,自引:0,他引:1  
The results of remote sensing survey of the Aral Sea in its degradation period are given. Satellite images are used to map shoreline retreat from 1961 to 2008 and to measure the decrease in the area. Seasonal variations in shoreline and water area are identified, suggesting seasonal level variations and correlating well with data of satellite altimetry surveys of sea level. Observations covered surge phenomena, seasonal dynamics of landscapes, and the seasonal salinization rhythm in coastal territories with the subsequent formation and weathering of salt crusts. The character of river runoff input into the Great Sea resulting from overbank flooding in artificial water bodies in the Amu Darya delta is identified.  相似文献   

11.
Shrink–swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses because of the changing soil water storage conditions. Only a limited number of long‐term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet using water and sediment measurements at a cultivated field outlet as baseline. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005–2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Stochastic optimization methods are used for optimal design and operation of surface water reservoir systems under uncertainty. Chance-constrained (CC) optimization with linear decision rules (LDRs) is an old approach for determining the minimum reservoir capacity required to meet a specific yield at a target level of reliability. However, this approach has been found to overestimate the reservoir capacity. In this paper, we propose the reason for this overestimation to be the fact that the reliability constraints considered in standard CC LDR models do not have the same meaning as in other models such as reservoir operation simulation models. The simulation models have fulfilled a target reliability level in an average sense (i.e., annually), whereas the standard CC LDR models have met the target reliability level every season of the year. Mixed integer nonlinear programs are presented to clarify the distinction between the two types of reliability constraints and demonstrate that the use of seasonal reliability constraints, rather than an average reliability constraint, leads to 80–150 % and 0–32 % excess capacity for SQ-type and S-type CC LDR models, respectively. Additionally, a modified CC LDR model with an average reliability constraint is proposed to overcome the reservoir capacity overestimation problem. In the second stage, we evaluate different operating policies and show that for the seasonal (average) reliability constraints, open-loop, S-type, standard operating policy, SQ-type, and general SQ-type policies compared to a model not using any operation rule lead to 190–460 % (200–550 %), 100–200 % (80–300 %), 0–90 % (0–60 %), 30–90 % (0–20 %), and 10–90 % (0–10 %) excess capacity, respectively.  相似文献   

13.
Construction of large dams is attractive because of their great benefits in flood control,hydropower generation,water resources utilization,navigation improvement,etc.However,dam construction may bring some negative impacts on sediment transport and channel dynamics adjustments.Due to the effects of recent water and soil conservation projects,sediment retention in the newly constructed large upstream reservoirs,and other factors,the sedimentation in the Three Gorges Reservoir(TGR)is quite different from the amount previously predicted in the demonstration stage.Consequently,based on the measured data,characteristics of sedimentation and the related channel deformation in the TGR were analyzed.The results imply that sediment transport tended to be reduced after the Three Gorges Project(TGP).Sedimentation slowed dramatically after 2013 and indicated obvious seasonal characteristics.Due to the rising water level in the TGR in the flood season,the yearly sediment export ratio(Eratio)was prone to decrease.The water level near the dam site should be reasonably regulated according to the flow discharge to improve the sediment delivery capacity and reduce sedimentation in the TGR,and to try to avoid situations where the flood retention time is close to 444 h.The depositional belt was discontinuous in the TGR and was mainly distributed in the broad reaches,and only slight erosion or deposition occurred in the gorge reaches.Sedimentation in the broad and gorge reaches accounted for 93.8% and 6.2% of the total sedimentation,respectively.The estuarine reach located in the fluctuating backwater area experienced alternate erosion-deposition,with a slight accumulative deposition in the curved reach.Sedimentation mainly occurred in the perennial backwater area.The insight gained in this study can be conducive to directly understanding of large reservoir sedimentation and mechanism of channel adjustment in the reservoir region in the main channel of large river.  相似文献   

14.
Skillful streamflow forecasts at seasonal lead times may be useful to water managers seeking to provide reliable water supplies and maximize hydrosystem benefits. In this study, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river–reservoir systems. In a case study of the Lower Colorado River system in central Texas, a number of potential predictors are evaluated for forecasting seasonal streamflow, including large-scale climate indices related to the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and others. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas.  相似文献   

15.
调水型水库是一种以抽水入库为主要来水水源的水体,是沿海地区重要的供水水源地.为了解这类水库的富营养化特点,于2005年全年每月2次对地处我国南亚热带地区(广东珠海市)的大镜山水库进行采样和监测.监测和测定指标主要包括氮、磷营养盐浓度、水温、透明度及叶绿素a浓度等,结合水库水文数据对水库富营养化特征和主要的影响因素进行分析.结果表明,2005年,大镜山水库的富营养化状态TSI_M指数在45-53之间,水库处于中富营养状态,多数时间处于富营养状态.水体富营养化主要参数表现出明显的季节变化,即叶绿素a浓度和富营养化状态指数在早春和晚秋出现两个峰值,明显地与温带富营养化水体在夏季出现单个峰值的特征不同.调水入库增加了水库营养盐负荷的同时,也在很大程度上影响了水库水动力学过程,与夏季的集中强降雨一起成为影响该水库富营养化的关键因素,这些因素改变了浮游植物群落对营养盐的直接响应,导致叶绿素a浓度与总磷、总氮浓度之间呈弱相关关系,降水和调水量在时间上相对配置重要性决定了叶绿素a浓度与营养盐浓度的关系.  相似文献   

16.
The suprapermafrost groundwater in permafrost region not only is an important component of the water cycle and land surface process, but also is closely associated with the charges of ecological environment in cold region. However, the seasonal dynamics, driving factors, and mechanism of suprapermafrost groundwater are not well understood. Based on observation at slope scale on suprapermafrost groundwater dynamics of typical alpine meadows in the Qinghai-Tibet Plateau, the seasonal dynamics, spatial distribution and driving factors of suprapermafrost groundwater were analyzed. The results showed that there were close relationships between the seasonal dynamics of suprapermafrost groundwater and the freezing-thawing processes of active soil in permafrost region. The seasonal dynamics of suprapermafrost groundwater and its slope distribution pattern were controlled by soil temperature of active layers. The phase and range of the suprapermafrost groundwater dynamics are determined by deep soil(below 60 cm depth) moisture and groundwater recharging sources. The relationship between active soil temperatures and dynamics of suprapermafrost groundwater levels was better described by Boltzmann functions. However, the influencing thresholds of soil temperature on groundwater dynamics varied at different depths of active layers and in different slope positions, which resulted in the significant spatial heterogeneity of suprapermafrost groundwater dynamics in slope scale. Land cover change and global warming certainly altered the dynamics of suprapermafrost groundwater and the hydraulic interaction between groundwater and rivers, and consequently altered the overall hydrologic cycle of watershed scale.  相似文献   

17.
The presence of metals, including manganese (Mn) and iron (Fe), adversely impacts water quality. In seasonally stratified reservoirs, Mn and Fe can accumulate in the water column due to reducing conditions in sediments and be released to downstream rivers through dam discharge. In addition to reservoir stratification influences, the release of metals downstream is influenced by hydrologic conditions in the river. We examined the seasonal and spatial variability of Mn and Fe concentrations in a eutrophic, hydropower reservoir and the downstream river over a two‐year period. Overall, we found that reservoir stratification was a strong predictor of tailrace Mn and Fe concentrations but that tailrace Fe concentrations were also influenced by dam discharge. Downgradient of the tailrace, river discharge and suspended sediment were the dominant predictors of both Mn and Fe concentrations. Using our data, we develop a conceptual model of seasonal and hydrologic drivers of metal concentrations. The model can be modified for other systems aiding drinking water utilities and other water users in forecasting under what seasonal and hydrologic conditions that Mn and Fe concentrations in river systems are likely to be elevated.  相似文献   

18.
Human-induced afforestation has been one of the main policies for environmental management of farmland abandonment in Mediterranean areas. Over the last decades, several studies have reviewed the impact of afforestation activities on geomorphological and hydrological responses and soil properties, although few studies have evaluated the effects on water table dynamics. In parallel to human-induced afforestation activities, natural revegetation occurred in abandoned fields and in fields where the intensity of human activity declined, driving the expansion of shrubs. This research addresses the spatial and temporal variability of water table dynamics in a small afforested sub-catchment located in the Central Spanish Pyrenees. Differences between afforestation (Pinus nigra and Pinus sylvestris) and natural plant colonization (shrubs, mainly Genista scorpius, Buxus sempervirens, and Juniperus communis) and early abandoned meadows (G. scorpius), are analysed in terms of runoff generation and seasonal water table depth dynamics. Precipitation, runoff and water table datasets recorded for the 2014–2019 period are used. Results show a high temporal and spatial variability with large fluctuations in discharge and water table. Groundwater dynamics varied markedly over the year, identifying a wet and dry period with different responses suggesting different runoff generation processes (Hortonian flow during dry and wet periods, and saturation excess runoff during wet conditions). Furthermore, important differences are noted among the various land cover types: (i) in the natural revegetation area (shrubland and meadows) a marked seasonal cycle was observed with short saturation periods during winter and spring; and (ii) in the afforestation areas, the water table dynamics showed a seasonal cycle with a high variability, with fast responses and rapid oscillations. Likewise, the relationship between the depth of water table and hydrological variables was not straightforward, suggesting complex hydrological behaviour.  相似文献   

19.
水面蒸发在季节变化上相比净辐射等气象要素的相位延迟反映了水体储热对水面蒸发的影响,量化这一对气象要素波动的滞后响应对理解和估算深水水库(湖泊)蒸发非常重要。三峡水库等河道型深水水库的水位和面积具有显著周期性变动,使得其水面蒸发的响应模式更为复杂,而目前对其认识非常薄弱。本文利用2013年8月—2020年7月三峡水库巴东站水面蒸发场和陆面蒸发场的蒸发和气象观测数据,分析了水面蒸发的季节变化及其年内滞后效应。结果表明:水面蒸发场蒸发量在年内的8和12月呈现双峰变化,与只有8月单峰值的陆面蒸发场蒸发量显著不同。水面蒸发场蒸发量相对净辐射、平均气温和水面温度分别存在4、3和2个月的滞后,而陆面蒸发场蒸发量相对滞后时间均在1个月以内;水面与陆面蒸发场相比,水温、蒸发量和水面与大气饱和差之间的滞后时间分别为1、3和4个月,而平均气温和净辐射之间不存在滞后。本文揭示出三峡水库巴东段水面蒸发年内滞后效应主要受到水库水温引起的水面与大气饱和差在季节上滞后的影响,需通过深入分析水温的时空变化来明确整个三峡水库的水面蒸发特征。  相似文献   

20.
本文系统研究了降雨量、降雨方式等对尚志井水位年、季、日动态的影响,指出了降雨是该井水位动态的主要影响因素,剖析了这种影响的特征。此外,还提出了东北地区深井水位早春回升的“冻层底部消融”补给机制的新观点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号