首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the observation of a rare solar radio event at hectometric wavelengths that was characterized by essentially 100% circularly polarized radiation and that was observed continuously for about six days, from May 17 to 23, 2002. This was the first time that a solar source with significantly polarized radiation was detected by the WAVES experiment on the Wind spacecraft. From May 19 to 22, the intense polarized radio emissions were characterized by quasi-periodic intensity variations with periods from one to two hours and with superposed drifting, narrowband, fine structures. The bandwidth of this radiation extended from about 400 kHz to 7 MHz, and the peak frequency of the frequency spectrum slowly decreased from 2 MHz to about 0.8 MHz over the course of four days. The radio source, at each frequency, was observed to slowly drift from east to west about the Sun, as viewed from the Earth and was estimated to lie between 26 and 82R (R = 696 000 km). We speculate that this unusual event may represent an interplanetary manifestation of a moving type IV burst and discuss possible radio emission mechanisms. The ISEE-3 spacecraft may possibly have detected a similar event some 26 years ago.  相似文献   

2.
On 13 June 2010, an eruptive event occurred near the solar limb. It included a small filament eruption and the onset of a relatively narrow coronal mass ejection (CME) surrounded by an extreme ultraviolet (EUV) wave front recorded by the Solar Dynamics Observatory’s (SDO) Atmospheric Imaging Assembly (AIA) at high cadence. The ejection was accompanied by a GOES M1.0 soft X-ray flare and a Type-II radio burst; high-resolution dynamic spectra of the latter were obtained by the Appareil de Routine pour le Traitement et l’Enregistrement Magnetique de l’Information Spectral (ARTEMIS IV) radio spectrograph. The combined observations enabled a study of the evolution of the ejecta and the EUV wave front and its relationship with the coronal shock manifesting itself as metric Type-II burst. By introducing a novel technique, which deduces a proxy of the EUV compression ratio from AIA imaging data and compares it with the compression ratio deduced from the band-split of the Type-II metric radio burst, we are able to infer the potential source locations of the radio emission of the shock on that AIA images. Our results indicate that the expansion of the CME ejecta is the source for both EUV and radio shock emissions. Early in the CME expansion phase, the Type-II burst seems to originate in the sheath region between the EUV bubble and the EUV shock front in both radial and lateral directions. This suggests that both the nose and the flanks of the expanding bubble could have driven the shock.  相似文献   

3.
It is well known that the oscillating MHD waves drive periodic variations in the magnetic field. But how the MHD waves can be triggered in the flaring loops is not yet well known. It seems to us that this problem should be connected with the physical processes occurring in the flare loop during a solar flare. A peculiar solar flare event at 04:00–04:51 UT on May 23, 1990 was observed simultaneously with time resolutions 1 s and 10 ms by Nanjing University Observatory and Beijing Normal University Observatory, which are about 1000 km apart, at 3.2 cm and 2 cm wavelengths, respectively. Two kinds of pulsations with quasi-periods 1.5 s and 40 s were found in radio bursts at the two short centimeter waves; however, the shorter quasi-periodic pulsations were superimposed upon the longer ones. From the data analysis of the above-mentioned quasi-periodic pulsations and associated phenomena in radio and soft X-ray emissions during this flare event published in Solar Geophysical Data (SGD), the authors suggest that the sudden increase in plasma pressure inside (or underlying) the flare kernel due to the upward moving chromospheric evaporated gas, which is caused by the explosive collision heating of strong non-thermal electrons injected downwards from the microwave burst source, plays the important role of triggering agents for MHD oscillations (fast magneto-acoustic mode and Alfvén mode) of the flare loop. These physical processes occurring in the flare loop during the impulsive phase of the solar flare may be used to account for the origin and observational characteristics of quasi-periodic pulsations in solar radio bursts at the two short centimeter wavelengths during the flare event of 1990 May 23. In addition, the average physical parameters N, T, B inside or underlying the flare kernel can be also evaluated.  相似文献   

4.
A high-speed, halo-type coronal mass ejection (CME), associated with a GOES M4.6 soft X-ray flare in NOAA AR 0180 at S12W29 and an EIT wave and dimming, occurred on 9 November 2002. A complex radio event was observed during the same period. It included narrow-band fluctuations and frequency-drifting features in the metric wavelength range, type III burst groups at metric – hectometric wavelengths, and an interplanetary type II radio burst, which was visible in the dynamic radio spectrum below 14 MHz. To study the association of the recorded solar energetic particle (SEP) populations with the propagating CME and flaring, we perform a multi-wavelength analysis using radio spectral and imaging observations combined with white-light, EUV, hard X-ray, and magnetogram data. Velocity dispersion analysis of the particle distributions (SOHO and Wind in situ observations) provides estimates for the release times of electrons and protons. Our analysis indicates that proton acceleration was delayed compared to the electrons. The dynamics of the interplanetary type II burst identify the burst source as a bow shock created by the fast CME. The type III burst groups, with start times close to the estimated electron-release times, trace electron beams travelling along open field lines into the interplanetary space. The type III bursts seem to encounter a steep density gradient as they overtake the type II shock front, resulting in an abrupt change in the frequency drift rate of the type III burst emission. Our study presents evidence in support of a scenario in which electrons are accelerated low in the corona behind the CME shock front, while protons are accelerated later, possibly at the CME bow shock high in the corona.  相似文献   

5.
This article describes in detail a burst from PSR 0950+08 on July 29, 1992. This event was observed by two radio telescopes (separated by ~ 200 km) operating at 103 MHz. There exists a very convincing indirect evidence that at the same time the pulsar also emitted large X-ray flux. The X-ray flux during the event compares with that during a solar X-ray flare. During the event the Sun was extraordinarily quiet as the solar X-ray flux 3 · 10–7 W/m2 only was observed. The cause for the burst is quite unknown and may be complex. However, a possibility of accretion of a comet-like object by pulsar may provide reasonable explanation of the observations. These results open some interesting questions about the pulsar physics.  相似文献   

6.
Second and sub-second structures were simultaneously detected in optical, radio and hard X-ray (HXR) band, respectively by the GanYu Station of Purple Mountain Observatory, Nobeyama Radio Observatory, and RHESSI satellite in the November 1, 2004 flare (Ji et al., in Astrophys. J. 636:L173, 2006), which may be contributed to the energy transport of the continuous heat flux from the hot corona or chromosphere evaporation and of the accelerated electrons. The linear correlations between the amplitudes of these fluctuations and their flare emissions, and those between the cross-correlation coefficients of the fluctuations at two H α kernels, or two radio frequencies, or two X-ray energies and their flare emissions may support the causal relationship of the flare and these time structures. While, the cross-correlations of the fluctuations at three different bands suggest that the fluctuations are caused by the common thermal or nonthermal processes in the flare. Moreover, some new features of the fluctuations are reported in the flare: (1) The sub-second fluctuations in radio and HXR bands have a same timescale, which is evidently larger than that in H-alpha band. The difference may be explained by the downward movements of nonthermal electrons or the upward motion of chromosphere evaporation. (2) The power-law distributions of the amplitudes of the second and the sub-second structures are obtained at optical, radio and HXR bands with different indices. (3) The peak-to-peak correspondence of Stokes I and V components in the sub-second structures at radio band suggests that they may be resulted from a periodical particle acceleration and particle injection in this event. However, the second structures may be caused by the modulations of Alfvén waves with an upward speed of 103 km/s.  相似文献   

7.
用云南天文台高时间分辨率(10ms)高频率分辨率(0.5MHz)的射电频谱仪观测分析证认了米波窄带短持续时间快频漂爆发的存在.这种爆发既不同于经典的III型爆发,也不同于spike和I型爆发,是一种新的米波爆发型别.它的特性与分米波的“blips”相近.  相似文献   

8.
A solar radio type II burst (which was seen as two patches of emission, one during 07:00–07:13 UT and other one during 07:20–07:35 UT) was observed on 22 March 1998 using the Madurai radio spectrograph. A broad range of data (from Culgoora and Hiraiso spectrographs, white-light data from SOHO/LASCO and X-ray data from Yohkoh and GOES satellites) was also studied for this event, which was analyzed in comparison with these supplementary data. In addition, the conditions associated with this shock were analyzed quantitatively. From the above investigations, the following conclusions have been made. The temporal relationship between H-alpha flare and burst has shown that the active region AR 8185 is the source of this type II burst. A bright front feature observed with LASCO is also associated with this type II burst and active region AR 8185. The time profile of the shock derived from the first patch of this type II burst coincides with the flare starting time. Also, within error limits, the start time of the CME is same as the flare. Hence, it is not possible to decide whether the type II originated in the flare or was driven by CME. In addition, the investigations of the second patch alone has provided the following results. The inferred shock speed for the second patch of emission is lower than the first and closer to the CME speed. The emission occurred below 50 MHz. These conditions imply that this patch may be a separate burst which might have been produced by the CME alone.  相似文献   

9.
Ionospheric data show that a very large burst of extreme ultraviolet radiation of about 7 ergs cm?2 sec?1 above the earth's atmosphere occurred during the proton flare of August 28, 1966. The time dependence of this burst agrees closely with the 8800 and 10700 MHz solar radio bursts and does not agree with solar radio bursts at frequencies less than 2800 MHz. The soft X-ray enhancement deduced from ionospheric data peaked about 4 min after the EUV burst.  相似文献   

10.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

11.
An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range of 16?–?28 MHz. The observed radio burst had some unusual properties, which are not typical for the other types of solar radio bursts. Its frequency drift rate was positive (about 500 kHz?s?1) at frequencies higher than 22 MHz and negative (100 kHz?s?1) at lower frequencies. The full duration of this event varied from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reached ≈103 s.f.u. and its polarization did not exceed 10 %. This burst had a fine frequency-time structure of unusual appearance. It consisted of stripes with the frequency bandwidth 300?–?400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft were possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burst is proposed.  相似文献   

12.
High-resolution images of the decay phase of a soft X-ray flare observed by the S-054 experiment on Skylab are compared with interferometric scans of the radio burst obtained simultaneously at 2.8 cm (Felli et al., 1975). The spatial resulution of the radio instrument in one direction, although lower than the X-ray telescope resolution, is high enough for a detailed comparison. The comparison clarifies the relationship between the sources of soft X-ray and thermal radio emission in solar flares. The X-ray emission is localized in a loop-like structure which appears spatially coincident with the rapidly varying component of the radio burst. The more stable components of the radio source, which do not appear to contribute substantially to X-ray emission, are found to be spatially associated with the extremes of the X-ray loop. A model of plasma-filled loops is suggested which accounts for the emissions in both spectral ranges and for their spatial location and temporal development.On leave from Osservatorio Astrofisico di Arcetri, Florence, Italy.  相似文献   

13.
Here we report a radio burst in absorption at 9?–?30 MHz observed with the UTR-2 telescope. This event occurred on 19 August 2003 about 11:16?–?11:26 UT, against solar type IV/II emission background. It is the first event where absorption was observed below 30 MHz. The absorption region, comparable with the solar radius size, traveled a long distance into the upper corona from the Sun. We show that the burst minimum corresponds to the almost full absorption of the solar radio emission up to a background level of the quiescent Sun. This supports the interpretation of the phenomenon as an absorption. The result is examined independently with the Nançay Decameter Array measurements and the Wind WAVES instrument records.  相似文献   

14.
Combined SOHO (Solar and Helisopheric Observatory) and ground based radio observations show evidently signatures of electrons accelerated by a shock wave during the event on July 9, 1996. A solar type II radio burst has been received as a signature of a coronal shock wave at 300 MHz on 9:10:54 UT. It was accompanied with electron beams appearing as type III radio bursts below 80 MHz. Simultaneously, the COSTEP (Comprehensive Suprathermal and Energetic Particle Analyzer) instrument aboard SOHO has measured enhanced electron fluxes in the range 30 keV – 3 MeV. This indicates that a coronal shock wave was able to produce high energetic electrons. A mechanism of electron acceleration up to relativistic velocities is presented and compared with the observations. The electron acceleration takes place at substructures of quasi-parallel collisionless shocks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Two remarkable intensity-time patterns in the 113 and 64 MHz single-frequency radio flux records during a type I noise storm and/or a type IV burst on 31 July, 1983 are studied. A comparison of the patterns at both frequencies reveals a high degree of resemblance and inherent common structure although the 64 MHz pattern was seen 40 min later than the 113 MHz pattern. An interpretation is given assuming a slowly uprising and thereby expanding clumpy plasma-magnetic field configuration which is (via accompanying coronal loops) two times illuminated by energetic electrons coming from the soft X-ray flare precursor source region of the H-alpha flares F1 and F2 (see Figure 1).  相似文献   

16.
We review and discuss a few interplanetary electron density scales which have been derived from the analysis of interplanetary solar radio bursts, and we compare them to a model derived from 1974–1980 Helios 1 and 2 in situ density observations made in the 0.3–1.0 AU range. The Helios densities were normalized to 1976 with the aid of IMP and ISEE data at 1 AU, and were then sorted into 0.1 AU bins and logarithmically averaged within each bin. The best fit to these 1976-normalized, bin averages is N(R AU) = 6.1R -2.10 cm-3. This model is in rather good agreement with the solar burst determination if the radiation is assumed to be on the second harmonic of the plasma frequency. This analysis also suggests that the radio emissions tend to be produced in regions denser than the average where the density gradient decreases faster with distance than the observed R -2.10.NAS/NRC Postdoctoral Research Associate on leave from Laboratory Associated with CNRS No. 264, Paris Observatory, France.  相似文献   

17.
Using the decimetric (700–1500 MHz) radio spectrometer and the synchronous observational system with high temporal resolution at four frequencies (1420, 2130, 2840 and 4260 MHz) of Yunnan Observatory, two rare events were observed on 2001 June 24 and 1990 July 30. The former was a small radio burst exhibiting pulsations with short periods (about 29, 40 and 100 ms) in the impulsive phase. The latter was a large radio burst, which at 2840 MHz produced radio pulsations with period of about 30 ms. This paper focuses on pulsations with very short periods in the range of 29–40 ms. The mechanism of generation of such pulsations may be modulation of radio radiation by the periodic trains of whistler packets originating in unstable regions of the corona. Alternatively, these pulsations can be attributed to wave-wave non-linear interactions of electrostatic upper hybrid waves driven by beams of precipitating electrons in flaring loops.  相似文献   

18.
M. R. Kundu 《Solar physics》1987,111(1):53-57
A type IV burst was observed on February 17, 1985 with the Clark Lake Radio Observatory multifrequency radioheliograph operating in the frequency range 20–125 MHz. This burst was associated with a coronal streamer disruption event. From two-dimensional images produced at 50 MHz, we show evidence of a type II burst and a slow moving type IV burst. The observations of the moving type IV burst suggests that a plasmoid containing energetic electrons can result from the disruption of a coronal streamer.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

19.
This article describes the observations of a type III radio burst observed at 103 MHz simultaneously by the two radio telescopes situated at Rajkot (22.3°N, 70.7°E) and Thaltej (23°N, 72.4°E). This event occurred on September 30, 1993 at about 0430 UT and lasted for only half a minute. The event consisted of several sharp spikes in a group. The rise and fall time of these are comparable, however the peaks of individual spikes varied by a factor of four. The comparison of these observations with the data of solar radio spectrograph HiRAS indicates that this was a metric radio burst giving highest emission at about 103 MHz.  相似文献   

20.
云南天文台高分辨率射电频谱仪观测到10毫秒级变周期振荡,带宽约10MHz,叠加在一个持续时间约500ms的射电频谱上.在德国Weissenau的太阳射电频谱记录上找到了对应的爆发;同时SESC(美国空间环境服务中心)发表了同一时刻获得的245MHz总强度射电爆发记录;还在日面城到了相应的H_α亮点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号