首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南海东北部中生界岩石学特征及沉积环境   总被引:35,自引:0,他引:35  
南海东北部潮汕坳陷发现中—晚侏罗世到白垩纪的海相中生代地层,由泥岩、砂岩、放射虫硅质岩夹鲕粒灰岩及火山岩构成。岩石组合及沉积特征反映出,从中-晚侏罗世到白垩纪沉积水深经历了由浅到深,然后又转为陆地的一个完整旋回,沉积环境则经历了由滨浅海相到深海相,又到滨海过渡相和陆相河湖体系的演变过程,在深海相与滨海陆地过渡相之间存在一个明显的环境突变,为沉积环境缺失所致。与深海相放射虫硅质岩相伴,则夹有玄武岩(细碧岩)层。沉积反应的气候条件从中-晚侏罗世-早白垩世的温暖湿润气候环境过渡到晚白垩世的炎热干旱气候环境。这套海相中生代地层的存在对解释南海北部中生代大地构造演化以及古特提斯洋和太平洋的关系具有重要意义。  相似文献   

2.
中国侏罗纪年代地层学研究的现状   总被引:6,自引:2,他引:4  
沙金庚 《地层学杂志》2005,29(2):124-129
“国际地层表”依据菊石带建立起来的侏罗纪年代地层系统在全球海相侏罗系的划分和对比中有着广泛的应用,但却很难直接应用于非海相侏罗纪地层系统中。中国的侏罗系多属非海相,近年来我国地质工作者们不但将中国的海相侏罗系与全球侏罗纪年代地层系统进行了较合理的对比,发现了穿越海相三叠系-侏罗系界线的连续沉积的剖面,而且建立了非海相侏罗系的阶。但是中国非海相侏罗系区域性阶的时代和不同阶之间的界线有待海相化石和地层测年来确定或检验  相似文献   

3.
The Late Permian Zechstein Group in northeastern Germany is characterized by shelf and slope carbonates that rimmed a basin extending from eastern England through the Netherlands and Germany to Poland. Conventional reservoirs are found in grainstones rimming islands created by pre-existing paleohighs and platform-rimming shoals that compose steep margins in the north and ramp deposits in the southern part. The slope and basin deposits are characterized by debris flows and organic-rich mudstones. Lagoonal and basinal evaporites formed the seal for these carbonate and underlying sandstone reservoirs. The objective of this investigation is to evaluate potential unconventional reservoirs in organic-rich, fine-grained and/or tight mudrocks in slope and basin as well as platform carbonates occurring in this stratigraphic interval. Therefore, a comprehensive study was conducted that included sedimentology, sequence stratigraphy, petrography, and geochemistry. Sequence stratigraphic correlations from shelf to basin are crucial in establishing a framework that allows correlation of potential productive facies in fine-grained, organic-rich basinal siliceous and calcareous mudstones or interfingering tight carbonates and siltstones, ranging from the lagoon, to slope to basin, which might be candidates for forming an unconventional reservoir. Most organic-rich shales worldwide are associated with eustatic transgressions. The basal Zechstein cycles, Z1 and Z2, contain organic-rich siliceous and calcareous mudstones and carbonates that form major transgressive deposits in the basin. Maturities range from over–mature (gas) in the basin to oil-generation on the slope with variable TOC contents. This sequence stratigraphic and sedimentologic evaluation of the transgressive facies in the Z1 and Z2 assesses the potential for shale-gas/oil and hybrid unconventional plays. Potential unconventional reservoirs might be explored in laminated organic-rich mudstones within the oil window along the northern and southern slopes of the basin. Although the Zechstein Z1 and Z2 cycles might have limited shale-gas potential because of low thickness and deep burial depth to be economic at this point, unconventional reservoir opportunities that include hybrid and shale-oil potential are possible in the study area.  相似文献   

4.
藏南聂拉木北部喜马拉雅山主脊带侏罗系重解   总被引:1,自引:0,他引:1  
李祥辉  王成善 《地质通报》2005,24(12):1121-1126
通过野外调查和地层系统校正,认为前人在该区划分的侏罗纪地层系统存在偏差。下侏罗统在喜马拉雅山主脊带南北两侧岩相变化较大,普普嘎组可能穿时;中上侏罗统岩相变化较小;侏罗系总厚度不超过1400m。中侏罗统鲕粒铁质岩所对应的岩石地层单元按命名先后原则应为定结组,形成于外陆棚环境,可能与全球侏罗纪海泛时期洋流涌入有关,代表特提斯喜马拉雅地区中侏罗世晚巴通期一次沉积地质事件;晚侏罗世基末利期在特提斯喜马拉雅可能存在与欧洲同期的缺氧事件。  相似文献   

5.
金若谷 《沉积学报》1987,5(4):78-89
本文从沉积序列、岩石类型、沉积构造和生物共生组合以及古地理位置等探讨了四川龙门山北段晚二叠世晚期的沉积相和沉积模式。提出了晚二叠世晚期沉积模式为缓坡型生物浅滩边缘沉积较深水碳酸盐-硅质岩边缘海槽环境。晚二叠世晚期(长兴期)由于华力西运动的波及和北东向和北西向两组断裂系的活动,海侵继续扩大,导致了碳酸盐台地发生破裂分化,出现了岩相和生物相分异明显,深沟纵横交错的古地理格局。四川龙门山北段晚二叠世晚期属边缘海槽沉积。  相似文献   

6.
The Pucará Group contains an excellent record of marine uppermost Triassic and basal Jurassic sedimentation. New biostratigraphic and lithostratigraphic studies have led to a reassessment of the regional internal correlation of the group and thus to a new understanding of the facies relationships. There is a relatively complete record of sedimentation from late Norian to late early Jurassic, the only notable omissions apparently occurring in the latest Norian and at the Hettangian-Sinemurian boundary. The oldest constituent formation, the Chambará, which is locally of great thickness, consists largely of dark cherty limestones representing basinal conditions of sedimentation. The succeeding Aramachay Formation marks widespread recommencement of sedimentation in the Semicostatum Zone of the Sinemurian, with organic-rich shales passing up into phosphatic deposits. It is proposed that this event is the consequence of a significant eustatic rise of sea level. The record of sedimentation of the youngest, Condorsinga, formation is restricted to Central Peru and no other middle-upper Lias units are identified. Alternating marginal marine and shallow neritic conditions are inferred with high carbonate production rates and dolomitizing environments. The character of the sediments, particularly the phosphatic deposits, suggests a tectonically quiescent continental margin with unrestricted access to the palaeo-Pacific Ocean, in contrast to earlier palaeogeographic interpretations. As such the Pucará Group represents unusual conditions in the development of the Andean regime.  相似文献   

7.
The Lower Cretaceous sections in northern Sinai are composed of the Risan Aneiza (upper Barremian-middle Albian) and the Halal (middle Albian-lower Cenomanian) formations. The facies reflect subtle paleobathymetry from inner to outer ramp facies. The inner ramp facies are peritidal, protected to open marine lagoons, shoals and rudist biostrome facies. The inner ramp facies grade northward into outer ramp deposits. The upper Barremian-lower Cenomanian succession is subdivided into nine depositional sequences correlated with those recognized in the neighbouring Tethyan areas. These sequences are subdivided into 19 medium-scale sequences based on the facies evolution, the recorded hardgrounds and flooding surfaces, interpreted as the result of eustatic sea level changes and local tectonic activities of the early Syrian Arc rifting stage. Each sequence contains a lower retrogradational parasequence set that constituted the transgressive systems tracts and an upper progradational parasequence set that formed the highstand systems tracts. Nine rudist levels are recorded in the upper Barremian through lower Cenomanian succession at Gabal Raghawi. At Gabal Yelleg two rudist levels are found in the Albian. The rudist levels are associated with the highstand systems tract deposits because of the suitability of the trophic conditions in the rudist-dominated ramp.  相似文献   

8.
The presence of shale gas has been confirmed in almost every marine shale distribution area in North America.Formation conditions of shale gas in China are the most favorable for marine,organic-rich shale as well.But there has been little research focusing on shale gas in Qiangtang Basin,Qinghai-Tibet Plateau,where a lot of Mesozoic marine shale formations developed.Based on the survey results of petroleum geology and comprehensive test analysis data for Qinghai-Tibet Plateau,for the first time,this paper discusses characteristics of sedimentary development,thickness distribution,geochemistry,reservoir and burial depth of organic-rich shale,and geological conditions for shale gas formation in Qiangtang Basin.There are four sets of marine shale strata in Qiangtang Basin including Upper Triassic Xiaochaka Formation (T3x),Middle Jurassic Buqu Formation (J2b),Xiali Formation (J2x) and Upper Jurassic Suowa Formation (J3s),the sedimentary types of which are mainly bathyal-basin facies,open platform-platform margin slope facies,lagoon and tidal-fiat facies,as well as delta facies.By comparing it with the indicators of gas shale in the main U.S.basins,it was found that the four marine shale formations in Qiangtang Basin constitute a multi-layer distribution of organic-rich shale,featuring a high degree of thickness and low abundance of organic matter,high thermal evolution maturity,many kinds of brittle minerals,an equivalent content of quartz and clay minerals,a high content of feldspar and low porosity,which provide basic conditions for an accumulation of shale gas resources.Xiaochaka Formation shale is widely distributed,with big thickness and the best gas generating indicators.It is the main gas source layer.Xiali Formation shale is of intermediate thickness and coverage area,with relatively good gas generating indicators and moderate gas formation potential.Buqu Formation shale and Suowa Formation shale are of relatively large thickness,and covering a small area,with poor gas generating indicators,and limited gas formation potential.The shale gas geological resources and technically recoverable resources were estimated by using geologic analogy method,and the prospective areas and potentially favorable areas for Mesozoic marine shale gas in Qiangtang Basin are forecast and analyzed.It is relatively favorable in a tectonic setting and indication of oil and gas,shale maturity,sedimentary thickness and gypsum-salt beds,and in terms of mineral association for shale gas accumulation.But the challenge lies in overcoming the harsh natural conditions which contributes to great difficulties in ground engineering and exploration,and high exploration costs.  相似文献   

9.
Thick Aptian deposits in north central Tunisia comprise hemipelagic lower Aptian, reflecting the sea-level rise of OAE 1a, and an upper Aptian shallow marine environment characterized by the establishment of a carbonate platform facies. Carbon stable isotope data permit recognition of the OAE 1a event in the Djebel Serdj section. Cephalopods are rare throughout these successions, but occurrences are sufficient to date the facies changes and the position of the OAE1a event. Ammonite genera include lower Aptian Deshayesites, Dufrenoyia, Pseudohaploceras, Toxoceratoides and ?Ancyloceras; and upper Aptian Zuercherella, Riedelites and Parahoplites. Correlation of carbon isotope data with those of other Tethyan sections is undertaken together with the integration of planktonic foraminiferal data.  相似文献   

10.
本文详细研究了西秦岭南带中志留统“硅、灰、泥岩”型层控铀矿含矿岩系的沉积相类型及特征,查明了本区中志留世各期的岩相古地理特征。着重讨论了铀矿田内控矿的地质条件。  相似文献   

11.
The Shah Kuh Formation of the Khur area (Central Iran) consists of predominantly micritic, thick-bedded shallow-water carbonates, which are rich in orbitolinid foraminifera and rudists. It represents a late(est) Barremian – Early Aptian carbonate platform and overlies Upper Jurassic – Barremian continental and marginal marine sediments (Chah Palang and Noqreh formations); it is overlain by basinal deposits of the Upper Aptian – Upper Albian Bazyab Formation. The lithofacies changes at both, the base and top of the Shah Kuh Formation are gradational, showing that the formation is part of an overall transgressive sedimentary megacycle, and that the formational boundaries are potentially diachronous on larger distances. Analyses of facies and stratal geometries suggest that the Shah Kuh carbonate system started as a narrow, high-energy shelf that developed into a large-scale, flat-topped rudist platform without marginal rim or steep slope. The Shah Kuh Platform is part of a large depositional system of epeiric shallow-water carbonates that characterized large parts of present-day Iran during Late Barremian – Aptian times (“Orbitolina limestones” of NW and Central Iran, the Alborz and the Koppeh Dagh). Their biofacies is very similar to contemporaneous deposits from the western Tethys and eastern Arabia, and they form an important, hitherto poorly known component of the Tethyan warm-water carbonate platform belt.  相似文献   

12.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

13.
Middle Jurassic radiolarites and associated pelagic limestones occur in the Rondaide Nieves unit of the Betic Cordillera, southern Spain. The Rondaide Mesozoic includes: (a) a thick succession of Triassic platform carbonates, comparable to the Alpine Hauptdolomit and Kössen facies; (b) Lower Jurassic pelagic limestones comparable to the Alpine Hierlatz and Adnet facies; (c) the Middle Jurassic Parauta Radiolarite Formation, described herein; and (d) a thin Upper Jurassic-Cretaceous condensed limestone succession. The Parauta Radiolarite Formation and associated limestones were studied with respect to stratigraphy, petrography, micropalaeontology (radiolarians, calcareous nanno- and microfossils) and facies. Radiolarite sedimentation occurred in the Middle Bathonian in a restricted and dysoxic deep Nieves basin, perched in the distal zone of a continental margin fringing the Tethyan ocean. This margin was adjacent to a young narrow oceanic basin between the South-Iberian margin and a continental block called Mesomediterranean Terrane. The Nieves basin was part of a marine corridor between the Proto-Atlantic and Piedmont-Ligurian basins of the Alpine Tethys. The regional tectonic position, the stratigraphical evolution since the Triassic, the age and the nature of the Mesozoic facies and the palaeogeographic relations to adjacent domains show striking analogies between the Betic Rondaide margin and coeval units of the Alps.  相似文献   

14.
The Cretaceous sedimentary rocks of the Pindos Zone in western Greece document the evolution of a Tethyan deep-water basin. New sedimentological and micropalaeontological studies reveal a complex basin history. Siliceous sediments with abundant radiolaria and organic-rich facies prevailed up to the early Late Cretaceous. Within the sediment-starved pre-Middle Cenomanian, marked black shale levels appear that are probably linked to oceanic anoxic events. At the change from the late Early to the early Middle Cenomanian, the sedimentary regime altered abruptly. The early Late Cretaceous is characterized by major calcareous redepositional events (orbitoline horizons) and often associated siliciclastic turbidite deposition (submarine-fan environments). In the late Late Cretaceous, carbonate supply increased rapidly, resulting in the evolution of a carbonate slope and basin-plain setting. Pelagic and allodapic limestones recorded basinwide blooms in planktonic foraminifera (elevata event) and a polyphase redepositional history that is interpreted to reflect the sensitivity of the basin to the tectonic evolution of Apulia.  相似文献   

15.
The Sanandaj–Sirjan Zone contains the metamorphic core of the Zagros continental collision zone in western Iran. The zone has been subdivided into the following from southwest to northeast: an outer belt of imbricate thrust slices (radiolarite, Bisotun, ophiolite and marginal sub-zones, which consist of Mesozoic deep-marine sediments, shallow-marine carbonates, oceanic crust and volcanic arc, respectively) and an inner complexly deformed sub-zone (late Palaeozoic–Mesozoic passive margin succession). Rifting and sea-floor spreading of Tethys occurred in the Permian to Triassic but in the Sanandaj–Sirjan Zone extension-related successions are mainly of Late Triassic age. Subduction of Tethyan sea floor in the Late Jurassic to Cretaceous produced deformation, metamorphism and unconformities in the marginal and complexly deformed sub-zones. Deformation climaxed in the Late Cretaceous when a major southwest-vergent fold belt formed associated with greenschist facies metamorphism and post-dated by abundant Palaeogene granitic plutons. In the southwest of the zone a Late Cretaceous island arc—passive margin collision occurred with ophiolite emplacement onto the northern Arabian margin similar to that in Oman. Final closure of Tethys was not completed until the Miocene when Central Iran collided with the northeast Arabian margin.  相似文献   

16.
The Late Jurassic evolution of Boreal and Arctic basins is reflected in the widespread deposition of organic-rich black shales (source rocks). In this connection, the priority should be placed on the development and refinement of zonal schemes for the Upper Jurassic of the Laptev Sea coast based on ammonites, foraminifers, ostracods, dinocysts, and spores and pollen from reference sections as the basis for stratigraphic, paleogeographic, and facies studies. The Upper Jurassic and Lower Cretaceous reference section of interest is located on the left side of the Anabar Bay of the Laptev Sea (Nordvik Peninsula, Urdyuk-Khaya Cape). An uninterrupted and continuous section from Upper Oxfordian to Lower Valanginian is exposed in coastal cliffs and consists mainly of silty clay deposits with abundant macro- and microfossils. A reliable biostratigraphic subdivision of the Upper Jurassic interval of this section was taken as the basis for the assessment of the correlation potential of different fossil groups and subsequent interregional correlations, facies analysis, and detailed paleogeographic reconstructions of the study area. The analysis of variations in the composition of macrobenthic communities and microphytoplankton and terrestrial palynomorph assemblages and the biofacies analysis allowed the reconstruction of the evolution of marine paleoenvironmental settings in the western part of the Anabar–Lena sea and in the terrestrial settings in the adjacent land area of Siberia.  相似文献   

17.
In earliest Jurassic times, terrigenous, continental and marginal marine deposition occurred in a large epeiric basin along the Tornquist Line in Europe. Detailed sedimentological studies allow recognition of palaeoenvironmental fluctuations in space and time. The main earliest Jurassic transgressions occurred in the early Hettangian, early Sinemurian, mid-Sinemurian and latest Sinemurian and formed bounding discontinuities (transgressive surfaces) of considerable correlative significance. There is a step-wise trend of increasing marine extension and influence during the early Hettangian, early Sinemurian, mid-Sinemurian and latest Sinemurian-earliest Pliensbachian transgressions. Four sequences, four transgressive systems tracts, three highstand systems tracts and three levels regarded as equivalents of maximum flooding surfaces are distinguished. In the case of type 2 sequences, when incised valley-fill deposits are not developed and regional erosion is less common, it may be rather difficult to define the sequence boundaries, which are often concealed within the amalgamated fluvial deposits occurring in the neighbouring parts of two adjacent sequences (fluvial/deltaic sediments terminate the highstand systems tracts and in this setting the transgressive systems tracts start with continental deposits prior to the transgressive surfaces). Generally, an exact correlation can be achieved between the sequence stratigraphy of the northeast and northwest European Lower Jurassic and the eustatic curve proposed by EPR (assuming some changes proposed by A. Hallam). The establishment of this correlation hopefully will stimulate future studies of the sequence stratigraphy of poorly dated siliciclastic deposits of marginal basins. In this setting even minor changes in sea-level may cause major changes in facies development over large areas.  相似文献   

18.
对于唐古拉山侏罗系沉积类型的不同认识由来已久,然而无论是将其视为地槽型沉积,还是地台型沉积,均难以令人满意地解释该区侏罗纪沉积的特点和性质。 作者在野外工作和室内研究的基础上,从地球化学因素、古生态分析、沉积岩沉积构造和矿物结构成熟度等综合考虑,对该区侏罗纪沉积的特点和性质提出下列证据: (1)含盐度值一般均低于广海的平均盐度值。 (2)发育了海相一半咸水相一陆相的双壳类动物群序列,并以半咸水双壳类属占优势。 (3)沉积构造多为浅水成因的小型波痕,交错层理沉积组合。 (4)沉积岩粒度分析表现了近岸环境的概率曲线特征。 (5)沉积岩矿物结构,成熟度较高,未见海相成因的粒级层理。 结论是唐古拉山区侏罗系应为近岸局限海环境下的沉积产物,在海退时期还发育了滨岸湖相沉积。 根据羌塘地区侏罗纪沉积相空间展布的特点,可以认为唐古拉山区侏罗系仅仅是大西洋型大陆边缘沉积的一个组成部分,是陆架大幅度坳陷所承受的巨厚陆源碎屑沉积,整个羌塘地区侏罗纪沉积在空间上的演替关系及其巨大厚度可借助于大西洋型大陆边缘特有的大陆堤前展沉积模式得到较好的解释。  相似文献   

19.
Abstract Successions across the Middle–Upper Jurassic disconformity in the Lusitanian Basin (west‐central Portugal) are highly varied, and were probably developed on a large westward‐inclined hangingwall of a half‐graben. The disconformity is preceded by a complex forced regression showing marked variations down the ramp, and provides an example of the effects of rapid, relative sea‐level falls on carbonate ramp systems. In the east, Middle Jurassic inner ramp carbonates (‘Candeeiros’ facies) are capped by a palaeokarstic surface veneered by ferruginous clays or thick calcretes. In the west, mid‐outer ramp marls and limestones (‘Brenha’ facies) are terminated by two contrasting successions: (1) a sharp‐based carbonate sandbody capped by a minor erosion surface, overlain by interbedded marine–lagoonal–deltaic deposits with further minor erosion/exposure surfaces; (2) a brachiopod‐rich limestone with a minor irregular surface, overlain by marls, lignitic marls with marine and reworked non‐marine fossils and charophytic limestones, with further minor irregular surfaces and capped by a higher relief ferruginous erosional surface. The age ranges from Late Bathonian in the east to Late Callovian in the west. This disconformity assemblage is succeeded by widespread lacustrine–lagoonal limestones with microbial laminites and evaporites (‘Cabaços’ facies), attributed to the Middle Oxfordian. Over the whole basin, increasingly marine facies were deposited afterwards. In Middle Jurassic inner‐ramp zones in the east, the overall regression is marked by a major exposure surface overlain by continental sediments. In Middle Jurassic outer‐ramp zones to the west, the regression is represented initially by open‐marine successions followed by either a sharp marine erosion surface overlain by a complex sandbody or minor discontinuities and marginal‐marine deposits, in both cases capped by the major lowstand surface. Reflooding led to a complex pattern of depositional conditions throughout the basin, from freshwater and brackish lagoonal to marginal‐ and shallow‐marine settings. Additional complications were produced by possible tilting of the hangingwall of the half‐graben, the input of siliciclastics from westerly sources and climate change from humid to more seasonally semi‐arid conditions. The Middle–Late Jurassic sea‐level fall in the Lusitanian Basin is also recorded elsewhere within the Iberian and other peri‐Atlantic regions and matches a transgressive to regressive change in eustatic sea‐level curves, indicating that it is related in part to a global event.  相似文献   

20.
The assemblages of the Early Jurassic (Hettangian–Pliensbachian) and Late Jurassic–Early Cretaceous (Tithonian–Berriasian) radiolarians were described for the first time in the eastern part of the Ekonai Zone of the Koryak Highland. The Hettangian–Pliensbachian assemblage was found in siliceous rocks of the Ionai Nappe and this finding expands the stratigraphic interval of its siliceous sequences from the Carboniferous to the Early Jurassic. The Tithonian–Berriasian assemblage was found in volcanosiliceous rocks of the Yanranai accretionary complex. Both assemblages contain taxa abundant in the Tethyan regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号