首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is one of the major natural disasters occurring in China and causes severe impacts on agricultural production and food security. Therefore, agricultural drought vulnerability assessment has an important significance for reducing regional agricultural drought losses and drought disaster risks. In view of agricultural drought vulnerability assessment with the characteristics of multiple factors and uncertainty, we applied the fuzzy comprehensive evaluation framework to agricultural drought vulnerability model. The agricultural drought vulnerability assessment model was constructed based on the multi-layer and multi-index fuzzy clustering iterative method, which can better reveal the drought vulnerability (including sensitivity and adaptation capacity). Furthermore, the cycle iterative algorithm was used to obtain the optimal index weight vector of a given accuracy by setting the objective function. It provides a new approach to weight determination of agricultural drought vulnerability assessment. In this study, agricultural drought vulnerability of 65 cities (as well as leagues and states) in the Yellow River basin was investigated using a fuzzy clustering iterative model and visualized by using GIS technique. The results showed clear differences and regularities among the spatial distribution of agricultural drought vulnerability of different regions. A large number of the regions in the basin consisted of those exhibiting high to very high vulnerability and were mainly distributed throughout Qinghai, Gansu, northern Shaanxi, and southern Shanxi, accounting for 46 % of the total assessment units. However, the regions exhibiting very high vulnerability were not significantly affected by droughts. Most of the regions exhibiting moderate vulnerability (21.5 % of the assessment units) were mainly concentrated among agricultural irrigation areas, where agriculture is highly sensitive to droughts, and drought occurrence in these regions will likely cause heavy losses in the future. The regions exhibiting slight to low vulnerability were relatively concentrated, accounting for 32.3 % of the assessment units, and were mainly distributed in the plains of the lower reaches of the Yellow River, where the economy was rather well developed and the agricultural production conditions were relatively stronger.  相似文献   

2.
3.
An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA   总被引:4,自引:3,他引:4  
Drought is a common occurrence in Nebraska and agriculture is the primary economic sector affected. Because of repeated and widespread severe drought impacts, more emphasis on drought risk management is warranted. This study develops an agricultural drought risk assessment model using multivariate techniques. The model is specific to corn and soybeans and is able to assess real-time agricultural drought risk associated with crop yield losses at critical phenological stages prior to and during the growing season. The assessment results are presented in a Geographic Information System to provide a better visualization. This model provides information in a timely manner about potential agricultural drought risks on dryland crop yield to decision makers ranging from agricultural producers to policy makers from local to national levels.  相似文献   

4.
The concept of vulnerability has emerged in recent decades as a key concept for the research on drought risk as well as in the implementation of mitigation strategies of drought risk. The context within which this concept emerges is one of scientific consensus: the research community agrees that we are witnessing a paradigm shift in water management policies, within a broader framework of changes in the relationship between humans and nature. In this context, vulnerability studies must become an instrument for the assessment and mitigation of risk. Based on the proposals put forward by the IPCC concerning the components of vulnerability (exposure, sensitivity and adaptive capacity), this paper proposes a methodology for the evaluation and analysis of drought vulnerability on the river basin scale. The methodology results in the calculation of a Drought Vulnerability Index (DVI) and the use of different techniques for the interpretation of results.  相似文献   

5.
Drought is a normal, recurrent feature of climate that affects virtually all countries to some degree. The number of drought-induced natural disasters has grown significantly since the 1960s, largely as a result of increasing vulnerability to extended periods of precipitation deficiency rather than because of an increase in the frequency of meteorological droughts. This increase in drought-induced natural disasters has resulted in a considerable growth of interest in drought mitigation and preparedness worldwide. The purpose of a national preparedness plan is to reduce societal vulnerability to drought through the adoption of preventive, anticipatory policies and programs. This paper describes a ten-step planning process that nations can follow to develop a drought preparedness plan. This process, originally developed in 1987, has been the basis of discussions at training seminars on drought preparedness for developing nations in Africa, Asia, and Latin America. It has also been adopted, with appropriate modifications, by state or provincial governments and by municipalities. The process is intended to be flexible so that governments can add, delete, or modify the suggested steps, as necessary.Published as Paper No. 10946, Journal Series, Nebraska Agricultural Research Division. The work reported here was conducted under Nebraska Agricultural Research Division Project 27-007. This material is based in part upon work supported by the National Science Foundation under Grant ATM-8704050.  相似文献   

6.
Drought risk assessment in the western part of Bangladesh   总被引:14,自引:8,他引:6  
Though drought is a recurrent phenomenon in Bangladesh, very little attention has been so far paid to the mitigation and preparedness of droughts. This article presents a method for spatial assessment of drought risk in Bangladesh. A conceptual framework, which emphasizes the combined role of hazard and vulnerability in defining risk, is used for the study. Standardized precipitation index method in a GIS environment is used to map the spatial extents of drought hazards in different time steps. The key social and physical factors that define drought vulnerability in the context of Bangladesh are identified and corresponding thematic maps in district level are prepared. Composite drought vulnerability map is developed through the integration of those thematic maps. The risk is computed as the product of the hazard and vulnerability. The result shows that droughts pose highest risk to the northern and northwestern districts of Bangladesh.  相似文献   

7.
Recurrent drought events in the Palamu district of Jharkhand state and the magnitude of drought losses primarily toward agricultural production in this dominantly monocropped region indicate the continuing susceptibility of the society to drought. This paper presents a method for spatial, geoinformatics-based assessment of agricultural, meteorological, and hydrological drought hazard in Palamu district. It was hypothesized that the key climatic, biophysical and social factors that define agricultural drought hazard were soils, geomorphology, drainage density, land use, and relief, whereas for meteorological drought hazard, it is rainfall, coefficient of variation of rainfall and for hydrological drought hazard, it is lithology, depth to water table, aquifer yield, and surface water bodies. The framework for the derivation of an agricultural, meteorological, and hydrological drought hazard map was created through the development of a numerical weighting scheme to evaluate the drought potential of the classes within each factor. A cumulative map created through spatial join of all the three types of drought provided a drought hazard scenario in totality. The area with different severity of drought hazards under cumulative drought hazards scenario (viz. very low (8.9?%), low (24.2?%), moderate (29.2?%), high (20.13), and very high (17.3?%)) revealed high drought proneness of the area and the usefulness of geoinformatics in better spatial prognosis of drought hazards.  相似文献   

8.
Groundwater vulnerability assessment to delineate areas that are more susceptible to contamination has become an important element for resource management and land use planning. The objective of this work was to integrate hydrogeologic data in a geographic information system (GIS) for phreatic groundwater vulnerability assessment of a pilot area from the Coastal Plain of the Rio Grande do Sul State, Brazil, using the DRASTIC method and adsorption capacity of soils. The studied ions were copper, lead, sulfate and phosphate. Using the original DRASTIC method, the vulnerability presented high values, mainly due to the texture of the sediments and the low depths of waters, which favor the accessibility of the contaminants to the groundwaters. DRASTIC with adsorption capacity of soils showed specifics results for each studied ion. Groundwater vulnerability to metals in relationship to anions was lower. These results show that the original DRASTIC method represents better contaminants with high mobility. An erratum to this article can be found at  相似文献   

9.
中国旱灾农业承灾体脆弱性诊断与评价   总被引:9,自引:0,他引:9  
旱灾是世界上影响面最广、造成农业损失最大的自然灾害类型,世界近一半的国家干旱严重。中国旱灾频繁,每年旱灾损失占各种自然灾害损失的15%以上,随着人口和农业的快速发展,农业承灾体脆弱性对灾情的放大也在增加。基于灾害系统理论,从致灾因子和耕地承灾体的区域组合角度,在旱灾频发高值区,选择雨养农业、灌溉农业和水田农业为主要承灾体类型,构建了农业旱灾脆弱性生产压力和生活压力,灾前—灾中易损性和灾中—灾后适应性等农业旱灾承灾体脆弱性诊断指标体系。提出脆弱性评价的区域模型,即:雨养农业的易损—适应模型(兴和)、灌溉农业的生产—生活压力模型(邢台)和水田农业的需水—灌水模型(鼎城)。基于农业承灾体脆弱性评价,提出制定适应降水变化的波动土地利用结构调整区域政策、建立农业生态—生产范式、建立“水银行”管理机制、建立用水效益和开源节流的评估体系以及加强“截水—抽水—控水”为一体的灌溉系统工程建设,提高灌溉应急能力等对策,以期为农业旱灾的防御和区域粮食安全决策提供科学依据。  相似文献   

10.
Kim  Ji Eun  Yu  Jisoo  Ryu  Jae-Hee  Lee  Joo-Heon  Kim  Tae-Woong 《Natural Hazards》2021,109(1):707-724

Due to the complex characteristics of drought, drought risk needs to be quantified by combining drought vulnerability and drought hazard. Recently, the major focus in drought vulnerability has been on how to calculate the weights of indicators to comprehensively quantify drought risk. In this study, principal component analysis (PCA), a Gaussian mixture model (GMM), and the equal-weighting method (EWM) were applied to objectively determine the weights for drought vulnerability assessment in Chungcheong Province, located in the west-central part of South Korea. The PCA provided larger weights for agricultural and industrial factors, whereas the GMM computed larger weights for agricultural factors than did the EWM. The drought risk was assessed by combining the drought vulnerability index (DVI) and the drought hazard index (DHI). Based on the DVI, the most vulnerable region was CCN9 in the northwestern part of the province, whereas the most drought-prone region based on the DHI was CCN12 in the southwest. Considering both DVI and DHI, the regions with the highest risk were CCN12 and CCN10 in the southern part of the province. Using the proposed PCA and GMM, we validated drought vulnerability using objective weighting methods and assessed comprehensive drought risk considering both meteorological hazard and socioeconomic vulnerability.

  相似文献   

11.
Groundwater drought denotes the condition and hazard during a prolonged meteorological drought when groundwater resources decline and become unavailable or inaccessible for human use. Groundwater drought risk refers to the combined physical risk and human vulnerability associated with diminished groundwater availability and access during drought. An integrated management support tool, GRiMMS, is presented, for the mapping and assessment of relative groundwater drought risk in the Southern African Development Community (SADC) region. Based on composite mapping analysis of region-wide gridded relative indices of meteorological drought risk, hydrogeological drought proneness and human groundwater drought vulnerability, the mapping results highlight consistent areas across the region with highest groundwater drought risk and populations in the order of 39 million at risk of groundwater drought at present. Projective climate-model results suggest a potentially significant negative impact of climate change on groundwater drought risk. The tool provides a means for further attention to the key, but neglected, role of groundwater in drought management in Africa.  相似文献   

12.
A multi-methodological approach based on monitoring and spatio-temporal analysis of groundwater quality changes is proposed. The presented tools are simple, quick and cost-effective to give service to all sorts of users. The chief purpose of the monitoring network is the detection of the piezometric or potenziometric level in the aquifer. The spatial and multi-temporal analysis of usual chemical and physical data provides both an assessment of the spatial vulnerability of the aquifer to seawater intrusion, defining a salinity threshold between fresh groundwater and brackish groundwater and of the water quality trend in terms of salinity. The evaluation of the salinity trend or of salinity-correlated parameters highlights the effects of groundwater mismanagement. The multiparameter logging provides a rapid groundwater quality classification for each well. The whole approach allows evaluating the effects of current management criteria and designing more appropriate management targets. The Apulian karstic coastal aquifers have been selected as a case study (Southern Italy). Three types of aquifer zones can be distinguished: (1) areas with low vulnerability to seawater intrusion, (2) areas with high vulnerability and (3) areas with variable vulnerability in which the salt degradation largely depends on the ability to manage the well discharge. The water quality degradation caused by seawater intrusion appears to be a combined effect of an anomalous succession of drought periods observed from about 1980 onwards and increased groundwater pumping, particularly during drought periods. A management criterion based on aquifer zones is proposed.  相似文献   

13.
干旱灾害是制约中国西北地区社会经济发展、农业生产和生态文明建设的重要自然灾害,而且随着气候变暖西北地区极端干旱事件发生频率和强度均呈增加趋势,影响不断加重。"中国西北干旱气象灾害监测预警及减灾技术研究"成果是在数十个国家级科研项目的支持下,经过过去20年的理论研究和应用技术开发所取得的一系列创新性成果。该成果对西北干旱形成机理及重大干旱事件发生、发展的规律取得了新认识,尤其是发现了形成西北干旱环流模态的4种主要物理途径;研制了西北干旱预测的新指标、干旱监测的新指数及监测农田蒸散的新设备,明显提高了干旱监测准确性和针对性;提出了山地云物理气象学新理论,研发了水源涵养型国家重点生态功能区——祁连山空中云水资源开发利用技术;发现了干旱半干旱区陆面水分输送和循环的新规律,揭示了绿洲自我维持的物理机制;认识了干旱气候变化对农业生态系统影响的新特征,建立了旱作农业对干旱灾害的响应关系;开发了旱区覆膜保墒、集雨补灌、垄沟栽培、适宜播期等应对气候变化的减灾技术,为西北实施种植制度、农业布局及结构调整和农业气候资源高效利用提供了科学方案。该成果的完成提升了中国干旱防灾减灾技术水平,培养了中国干旱气象科技队伍,推进了西北地区干旱气象业务服务能力,对西北地区社会经济发展、农业现代化和生态文明建设等方面起到了重要的促进作用。在此基础上,展望了西北地区干旱气象科学研究中迫切需要、有可能突破的主要领域。  相似文献   

14.
A practical issue is present in sustaining and rehabilitating the ecologically vulnerable post-mining area in which the environmental condition varies spatially and therefore influenced by multiple factors. This paper attempts to integrate the ecological vulnerability assessment and rehabilitation treatment to assist land managers in revealing vulnerable features along with developing treatments of vulnerability mitigation. Using a post-mining site in a mountainous area in western China as study area, an indicator system and framework for assessing and reducing vulnerability were developed based on a vulnerability analysis. Geo-informatics, such as satellite image processing and spatial analysis, were employed to perform the assessment and planning. It was found that higher exposure and sensitivity are the main causes of increased vulnerability in a seriously disturbed post-mining area. Rehabilitation treatments were arranged spatially and structurally based on the framework of vulnerability mitigation. A pre-evaluation of the effectiveness shows this type of rehabilitation has a convergence effect that clusters and lowers the ecological vulnerability index (EVI). The average value of EVI will be reduced by 15.02% if the minimum standards of rehabilitation can be completed. Altogether, an integration of rehabilitation treatments and the quantification of vulnerability in a spatially explicit manner are critical for planners to gain more insight into ecological vulnerability in post-mining area, which provides guidance to simplify rehabilitation planning with respect to vulnerability mitigation.  相似文献   

15.
Bangladesh is one of the most natural hazard-prone countries in the world with the greatest negative consequences being associated with cyclones, devastating floods, riverbank erosion, drought, earthquake, and arsenic contamination, etc. One way or other, these natural hazards engulfed every corner of Bangladesh. The main aim of this research paper is to carry out a multi-hazards risk and vulnerability assessment for the coastal Matlab municipality in Bangladesh and to recommend possible mitigation measures. To this aim, hazards are prioritized by integrating SMUG and FEMA models, and a participation process is implemented so as to involve community both in the risk assessment and in the identification of adaptation strategies. The Matlab municipality is highly vulnerable to several natural hazards such as cyclones, floods, and riverbank erosion. The SMUG is a qualitative assessment, while FEMA is a quantitative assessment of hazards. The FEMA model suggests a threshold of highest 100 points. All hazards that total more than 100 points may receive higher priority in emergency preparedness and mitigation measures. The FEMA model, because it judges each hazard individually in a numerical manner, may provide more satisfying results than the SMUG system. The spatial distributions of hazard, risk, social institutions, land use, and other resources indicate that the flood disaster is the top environmental problem of Matlab municipality. Hazard-specific probable mitigation measures are recommended with the discussion of local community. Finally, this study tries to provide insights into the way field research combining scientific assessments tools such as SMUG and FEMA could feed evidence-based decision-making processes for mitigation in vulnerable communities.  相似文献   

16.
This paper analyses monthly differences in drought impact on vegetation activity in a semi-arid region in the north-east of the Iberian Peninsula between 1987 and 2000. The study determines spatial differences in the effects of drought on the natural vegetation and agricultural crops by means of the joint use of vegetation indexes derived from AVHRR images, a drought index (standardized precipitation index), and Geographic Information Systems. The results show that the effect of drought on vegetation varies noticeably between areas, a pattern that is determined mainly by the location of land-cover types. The influence also varies each month and, in general, is higher during the spring and summer. Aridity and vegetation characteristics similarly account, in part, for spatial differences in the impact of drought on vegetation. In general, the most arid areas, where vegetation cover and activity are low, are those in which the interannual variability of vegetation activity is more determined by the drought occurrence. In assessing drought impact, this analysis takes into account the effects of drought on the vegetation and also considers spatial and seasonal differences. The results should be useful for the management of natural vegetation and crops and for the development of better drought mitigation strategies.  相似文献   

17.
Mountain hazards such as landslides, floods and avalanches pose a serious threat to human lives and development and can cause considerable damage to lifelines, critical infrastructure, agricultural lands, housing, public and private infrastructure and assets. The assessment of the vulnerability of the built environment to these hazards is a topic that is growing in importance due to climate change impacts. A proper understanding of vulnerability will lead to more effective risk assessment, emergency management and to the development of mitigation and preparedness activities all of which are designed to reduce the loss of life and economic costs. In this study, we are reviewing existing methods for vulnerability assessment related to mountain hazards. By analysing the existing approaches, we identify difficulties in their implementation (data availability, time consumption) and differences between them regarding their scale, the consideration of the hazardous phenomenon and its properties, the consideration of important vulnerability indicators and the use of technology such as GIS and remote sensing. Finally, based on these observations, we identify the future needs in the field of vulnerability assessment that include the user-friendliness of the method, the selection of all the relevant indicators, the transferability of the method, the inclusion of information concerning the hazard itself, the use of technology (GIS) and the provision of products such as vulnerability maps and the consideration of the temporal pattern of vulnerability.  相似文献   

18.
An aquifer vulnerability of the Benin Formation aquifer (Calabar, southern Nigeria) has been assessed using a combination of DRASTIC index and GIS technology. The assessment was necessitated by the fact that uncontrolled disposal of domestic, industrial and agricultural wastes have caused groundwater contamination. Therefore, prevention of contamination, monitoring and management of the aquifer was urgently required to increase the efficient use of the current water supplies. The DRASTIC method uses seven parameters (depth to groundwater table, net recharge, aquifer media, soil media, topography, influence of vadose zone and hydraulic conductivity), which were used to produce vulnerability maps. The drastic vulnerability index ranged between 124 and 170. The vulnerability map shows that the aquifer is highly vulnerable in southeastern parts of the area covering about 22 %. The medium vulnerability area covers about 56.8 % of Calabar extending from the southwest to northern parts. 21.2 % of the area covering the central and northern parts the area lies within the low vulnerability zone. The present industrial and activities are located in the eastern and western parts, which falls within the low-medium vulnerability areas. Documented nitrate concentration in hand-dug wells and boreholes are in agreement with vulnerability zones. Sensitivity analysis was performed to evaluate the sensitivity of each parameter between map layers such that subjectivity can be reduced to an extent and new weights computed for each DRASTIC parameter. As management options sensitive areas, especially in the southern parts of Calabar area, should be protected from future development.  相似文献   

19.
In hilly areas, highway projects can be a cause of landslides as well as an element of vulnerability due to landslides. Hence, landslide susceptibility mapping of highway corridors can substantially mitigate loss of life and property. For this, a Landslide Susceptibility Assessment Model (LSAM) was developed for a corridor of 27 km along NH 10 in the East Sikkim. Landslide inducing factors viz. Aspect, Distance from Fault, Distance from Road, Drainage Density, Land use and Land cover, Lithology, Plan Curvature, Rainfall, Slope, Soil Depth, and Soil Texture were considered for the study. Results show that areas in proximity to the highway and areas with steeper slope had a higher landslide susceptibility than otherwise. Spatial explicit sensitivity analysis indicated that LSAM was sensitive to distance from the highway and slope. Vehicle vulnerability assessment of base year and horizon years showed that vulnerability increased through time. LSAM is appropriate for hazard mitigation for areas with poor historical data on landslides.  相似文献   

20.
The groundwater vulnerability indices are valuable tools for the development of agrochemicals management strategies based on environmental/agricultural policies. The groundwater vulnerability methods of LOS, SINTACS, DRASTIC, Pesticide DRASTIC, GOD and AVI were applied for the agricultural fields of Sarigkiol basin (Northern Greece). The results of the aforementioned methods were examined and discussed in order to show how the dissimilarities in the vulnerability assessment approaches may become an advantage. The results of the methods were used to propose a combined conceptual approach which adds another two dimensions (depth and time) in the current two-dimensional vulnerability mapping (longitude, latitude) procedures. The LOS method provided information about the intrinsic vulnerability of the topsoil (30 cm) to water (+conservative pollutants) and nitrogen losses, and the AVI method described the vulnerability of the unsaturated zone to allow pollutants to reach the aquifer while the aquifer vulnerability was analysed using SINTACS, DRASTIC, Pesticide DRASTIC and GOD. In this study, the results of the SINTACS method were found more accurate to describe the local aquifer conditions. The final conceptual approach provided a stratified vulnerability (dimension of depth) of the overall hydrogeologic system using LOS for the topsoil, AVI for unsaturated zone and SINTACS for the aquifer. The dimension of time was introduced by the LOS and AVI methods, which provide quantitative results in time. The use of LOS method also highlighted the basic limitation of the other methods to describe the potential contribution to pollution of areas (especially upland areas) which are out of the aquifer boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号