首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation between the horizontal profiles of the subsurface resistivity and surface magnetotelluric data can be described by the input and output of a moving-average filter. The impulse response of this spatial filter, which characterizes the averaging process of the magnetotelluric measurements, is given by the sensitivity profile. Thus, the sensitivity analysis can provide insight into the characteristics of the measurements and hence the mechanism of the static effects. The sensitivity analysis presented here consists of constructing the vertical section of the sensitivity distribution using the finite-element method and then Fourier transforming the selected horizontal profiles. When the dipole is assumed for measuring the electric field, the static effects can be explained by the high-pass filter characteristics for the near-surface. When the electrode separation is taken into account, the sensitivity can be obtained by averaging the sensitivities for the dipoles over the horizontal distance equal to the electrode separation. Therefore, the higher-frequency components at each depth decrease with increasing electrode separation. Thus, although the static effects can be reduced simply by increasing the electrode separation, information on the resistivity variation at depth is also lost. However, such an adverse effect can be reduced by making the EMAP-type measurements followed by the spatial filtering of the profile data using the tapered weighting function.  相似文献   

2.
鄂尔多斯盆地西缘构造带北段深部电性结构   总被引:14,自引:9,他引:5       下载免费PDF全文
在横跨鄂尔多斯盆地西缘构造带北段的查甘池—银川—五湖洞约200 km长的东西向剖面上,进行了67个测点的大地电磁探测.使用“远参考道”和Robust技术处理数据.分析了各测点视电阻率、阻抗相位、二维偏离度、电性主轴方位角、磁实感应矢量等参数,采用NLCG二维反演方法对TE和TM两种模式的数据进行了二维反演.得到的二维电性结构表明,沿剖面查汗断裂带、贺兰山东缘断裂带和黄河断裂带是明显较大型电性边界,为超壳断裂带,而三关口断裂带深部延深不大.沿剖面阿拉善地块、贺兰山褶皱带、银川断陷盆地和鄂尔多斯地块具有明显不同的深部电性结构特征.阿拉善地块内部除浅表电阻率较低外,以下到深度约50 km都表现为高电阻特性.贺兰山褶皱带电性结构复杂,电阻率高低相间.银川盆地具有上宽下窄最深达约8 km低阻层,具有断陷盆地特征.鄂尔多斯地块具有低-高-低的深部电性结构特征,成层性较明显.  相似文献   

3.
Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high‐chargeability low‐resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high‐resolution image of the top ~450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep‐resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ~1‐km depth.  相似文献   

4.
To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.  相似文献   

5.
航空电磁拟三维模型空间约束反演   总被引:1,自引:0,他引:1       下载免费PDF全文
为了克服时间域航空电磁数据单点反演结果中常见的电阻率或层厚度横向突变造成数据难以解释的问题,通过引入双向约束实现航空电磁拟三维空间约束反演.除考虑沿测线方向相邻测点之间的横向约束外,同时还考虑了垂直测线方向测点在空间上的相互约束.为此,首先设计拟三维模型中固定层厚和可变层厚两种空间约束反演方案,然后通过在目标函数中引入沿测线和垂直测线方向上的模型参数约束矩阵,并使用L-BFGS算法使目标函数最小化,获得最优拟三维模型空间反演解.基于理论模型和实测数据反演,对单点反演与两种空间约束反演方案的有效性进行比较,证明本文空间约束反演算法对于噪声的压制效果好,反演的界面连续光滑,同时内存需求和反演时间少,是一种快速有效的反演策略.  相似文献   

6.
In order to gain a better understanding of the geometry of surface faults, five Controlled Source/Radio Magnetotelluric (CSRMT) profiles were measured across the Volvi basin, 45 km northeast of the city of Thessaloniki in Greece. The data were collected in two frequency ranges: a) 1–12.5 kHz using a remotely controlled double horizontal magnetic dipole transmitter (CSAMT measurements), and b) 15–250 kHz using the signal from distant radio transmitters (RMT measurements). The transition from the RMT band to the CSAMT band was smooth and continuous allowing us to combine both datasets for plane-wave modeling. The surface geology shows a predominantly 2D structure, and therefore we planned the survey into profiles perpendicular to the geological strike. We have used a 2D interpretation tool to model the data in TE, TM, TE + TM and determinant modes. Using a 4% error floor on the impedance, 2D resistivity models from inversion of the determinant data provide lower RMS data fits (4.2 and 1.2 for resistivity and phase, respectively) compared to the combined TE + TM data (4.4, 2.8, overall resistivity and phase, respectively). 2D inversion of the measured tensor data shows a sharp change in the depth to the top of resistive gneiss–schist basement that is overlain by a less resistive overburden at southern basin flanks. The change in depth to the bedrock is clearly seen in all 2D models along the measured profiles suggesting the existence of normal faults with strike directions of NE–SW to E–W. The 2D electrical resistivity models suggest that the bedrock deepens towards south-west. The resistivity models are also compared with the existing borehole information in the area and show a reasonable correlation. For example the sharp change of depth to the bedrock towards the center of the basin as seen in the resistivity models are also confirmed by the borehole data.  相似文献   

7.
Shallow conductive heterogeneity can lead to static shifts ain the apparent resistivity sounding curve of controlled-source audio-frequency magnetotellurics (CSAMT). The static effect will shift the apparent resistivity curves along with axial log-log coordinates. Such an effect, if not properly processed, can distort the resistivity of rock formation and the depth of interfaces, and even make the geological structures unrecognizable. In this paper, we discuss the reasons and characteristics of the static shift and summarize the previous studies regarding static shift correction. Then, we propose the Guided Image Filtering algorithm to suppress static shifts in CSAMT. In detail, we use the multi-window superposition method to superimpose 1D signals into a 2D matrix image, which is subsequently processed with Guided Image Filtering. In the synthetic model study and field examples, the Guided Image Filtering algorithm has effectively corrected and suppressed static shifts, and finally improved the precision of data interpretation.  相似文献   

8.
Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, timeconsuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.  相似文献   

9.
A statistical test on climate and hydrological series from different spatial resolution could obtain different regional trend due to spatial heterogeneity and its temporal variability. In this study, annual series of the precipitation heterogeneity indices of concentration index (CI) and the number of wet days (NW) along with annual total amount of precipitation were calculated based on at‐site daily precipitation series during 1962–2011 in the headwater basin of the Huaihe River, China. The regional trends of the indices were first detected based on at‐site series by using the aligned and intrablock methods, and field significance tests that consider spatial heterogeneity over sites. The detected trends were then compared with the trends of the regional index series derived from daily areal average precipitation (DAAP), which averages at‐site differences and thus neglects spatial heterogeneity. It was found that the at‐site‐based regional test shows increasing trends of CI and NW in the basin, which follows the test on individual sites that most of sites were characterized by increasing CI and NW. However, the DAAP‐derived regional series of CI and NW were tested to show a decreasing trend. The disparity of the regional trend test on at‐site‐based regional series and the DAAP‐derived regional series arises from a temporal change of the spatial heterogeneity, which was quantified by the generalized additive models for location, scale, and shape. This study highlights that compared with averaging indices, averaging at‐site daily precipitation could lead to an error in the regional trend inference on annual precipitation heterogeneity indices. More attention should be paid to temporal variability in spatial heterogeneity when data at large scales are used for regional trend detection on hydro‐meteorological events associated with intra‐annual heterogeneity.  相似文献   

10.
Magnetotelluric (MT) and ground magnetic surveys were conducted on the Mahallat geothermal field situated in Markazi province, central Iran, as a primary part of the explorations and developments of a geothermal energy investigation program in the region. Mahallat region has the greatest geothermal fields in Iran. MT survey was performed in November 2011 on an 8 km profile crossing the hot springs with a total of 17 stations. The 2D inversion of the determinant MT data was performed using a 2D inversion routine based on the Occam approach. The 2D resistivity model obtained from the determinant data shows a low resistivity zone at 800-2000 m depth and a higher resistivity zone above the low resistivity zone, interpreted as geothermal reservoir and cap rock, respectively. It also revealed two major concealed faults which are acting as preferential paths for the circulation of hydrothermal fluids. To obtain more geophysical evidence, a ground magnetic survey with 5000 stations was also performed over an area of 200 km2 around the MT profile. Magnetic measurements show a main positive anomaly of about +1000 nT over the study area, which could be interpreted as an intrusive body with the high magnetic susceptibility (i.e. mafic and ultramafic rocks) into the sedimentary host rocks. We interpret the body as the heat source of the geothermal system. Structural index and depth estimation of the anomaly indicate that the intrusive body is similar to a cylinder extending from about one kilometer depth down to greater depths. The results of MT and magnetic investigations indicate a geothermal reservoir which proves the preliminary geological observations to a great extent.  相似文献   

11.
The collision between the Arabian and Eurasian plates in eastern Turkey causes the Anatolian block to move westward. The North Anatolian Fault (NAF) is a major strike-slip fault that forms the northern boundary of the Anatolian block, and the Erzincan Basin is the largest sedimentary basin on the NAF. In the last century, two large earthquakes have ruptured the NAF within the Erzincan Basin and caused major damage (M s = 8.0 in 1939 and M s = 6.8 in 1992). The seismic hazard in Erzincan from future earthquakes on the NAF is significant because the unconsolidated sedimentary basin can amplify the ground motion during an earthquake. The amount of amplification depends on the thickness and geometry of the basin. Geophysical constraints can be used to image basin depth and predict the amount of seismic amplification. In this study, the basin geometry and fault zone structure were investigated using broadband magnetotelluric (MT) data collected on two profiles crossing the Erzincan Basin. A total of 24 broadband MT stations were acquired with 1–2 km spacing in 2005. Inversion of the MT data with 1D, 2D and 3D algorithms showed that the maximum thickness of the unconsolidated sediments is ~3 km in the Erzincan Basin. The MT resistivity models show that the northern flanks of the basin have a steeper dip than the southern flanks, and the basin deepens towards the east where it has a depth of 3.5 km. The MT models also show that the structure of the NAF may vary from east to west along the Erzincan Basin.  相似文献   

12.
横跨大兴安岭与海拉尔盆地和松辽盆地结合地带的大地电磁测深剖面揭示了盆山构造的深部电性结构.剖面西起海拉尔盆地东缘,向东延伸穿过大兴安岭中部,一直到达松辽盆地西缘.本文对剖面测点的二维偏离度、构造走向等进行了计算和分析,采用非线性共轭梯度(NLCG)二维反演方法对TM模式的数据进行了反演,获得了该剖面的地壳、上地幔电性结构模型,划分出三个典型构造单元:海拉尔盆地、大兴安岭和松辽盆地.研究结果表明,海拉尔盆地东缘和松辽盆地西缘浅部都呈低阻特征,但松辽盆地西缘深部电性结构比较复杂,而大兴安岭整体呈高阻特征.海拉尔盆地东缘可能属于兴安块体,松辽盆地西缘与大兴安岭接触关系复杂.海拉尔盆地东缘岩石圈厚度约为110km,大兴安岭岩石圈厚度约为110~150km.大兴安岭上地壳基本呈高阻特征,可能为多次叠置的岩浆岩,代表大兴安岭经历了多期次岩浆作用;中下地壳横向存在较大范围低阻体,可能反映了大兴安岭地壳内部非刚性的特点;残存在岩石圈地幔的高阻异常,说明其下地壳可能发生过拆沉作用.大兴安岭与松辽盆地结合带存在一个岩石圈尺度的西倾低阻带,向下延伸到岩石圈底部,可能是早期松嫩地块向兴安地块俯冲并以软碰撞形式拼合的构造遗迹.  相似文献   

13.
Mapping deep geological hydrocarbon targets is of significant importance in basin exploration. In areas lacking reliable seismic data, magnetotelluric (MT) and gravity explorations are helpful to delineate the distribution of potential deep geological hydrocarbon targets. Here we investigate the effectiveness of the integrated 3D MT and gravity explorations for mapping the potential deep hydrocarbon source rocks. The result based on the data from the W Basin (part of the Ordes Basin) of China demonstrates that the method is efficient and economical for basin exploration. The method is particularly useful in target areas which are of great interest for oil and gas exploration but lack high quality seismic data. In our method, we first use the high-precision 3D small-bin MT data acquisition to improve the data accuracy. Then we perform datum static correction method and apply 3D inversion to obtain the3D resistivity distribution. We also develop a layered resistivity model based on resistivity logging to assist the interpretation of the inverted 3D resistivity data so as to derive an initial 3D geological model. Starting from the initial model, we use 2D gravity data to update the model via 2D inversion line by line, and then pass the updated model for the next round of the 3D MT inversion. The integrated inversion is implemented iteratively so the model converges to satisfy the need of final geological analysis. The application to the W Basin shows that we could successfully delineate the geological distribution of the potential deep hydrocarbon source rocks within the basin and map the thickness of the upper Paleozoic.  相似文献   

14.
李满  肖骑彬  喻国 《地球物理学报》1954,63(11):4125-4143
阿尔金断裂带东段走滑速率沿断裂走向方向存在明显的流失现象,有关阿尔金断裂带的影响范围及走滑速率变化的机制需要有更多的深部结构证据来提供支撑.本文以阿尔金断裂带昌马段为窗口,获取了4条横穿阿尔金断裂带及相邻地区的大地电磁测深剖面.二维电性剖面显示在阿尔金断裂带北侧中上地壳以连续的高阻体为主,而南侧祁连山内部的深部电性结构在横向上有较为复杂的变化.这一点与区域构造背景相对应,即北侧的塔里木盆地东缘依然具有较好的整体性,南侧的祁连山是青藏高原北缘生长的最前端,变形强烈.在断裂带的结构特征上,阿尔金断裂带沿走向方向的切割深度在昌马盆地西侧发生了显著的降低,与阿尔金断裂带相对应的电性边界在这里向南偏移了约15 km,对应F18断裂,并与昌马盆地相接.祁连山北部的断裂带,包括昌马断裂、旱峡—大黄沟断裂总体呈现出低角度南倾的样式,切过高阻异常体的顶部.虽然昌马盆地可以起到连接断裂带的阶区的作用,将部分阿尔金断裂的走滑分量转移到盆地南侧的昌马断裂上,但是昌马断裂的走滑速率从西向东是增加的,东侧的走滑速率甚至大于阿尔金断裂沿走向方向的流失分量.我们认为在青藏高原北部主要断裂带的活动还是受印度—欧亚板块碰撞引起的远程挤压效应的影响,包括阿尔金断裂以及祁连山内部系列断层都处于斜向挤压应力环境.在这种基本构造模式下,阿尔金断裂、断裂F18、昌马盆地、昌马断裂构成了一个局部的走滑速率分解-转换-吸收体系,对局部应力状态产生影响.  相似文献   

15.
Airborne electromagnetic (AEM) surveys are currently being flown over populated areas and applied to detailed problems using high flight line densities. Interpretation information is supplied through a model of the subsurface resistivity distribution. Theoretical and survey data are used here to study the character and reliability of such models. Although the survey data were obtained using a fixed-wing system, the corresponding associations with helicopter, towed-bird systems are discussed. Both Fraser half-space and 1D inversion techniques are considered in relation to their ability to distinguish geological, cultural and environmental influences on the survey data. Fraser half-space modelling provides the dual interpretation parameters of apparent resistivity and apparent depth at each operational frequency. The apparent resistivity was found to be a remarkably stable parameter and appears robust to the presence of a variety of at-surface cultural features. Such features provide both incorrect altitude data and multidimensional influences. Their influences are observed most strongly in the joint estimate of apparent depth and this accounts for the stability of the apparent resistivity. Positive apparent depths, in the example data, result from underestimated altitude measurements. It is demonstrated that increasingly negative apparent depths are associated with increasing misfits between a 1D model and the data. Centroid depth calculations, which are a transform of the Fraser half-space parameters, provide an example of the detection of non-1D influences on data obtained above a populated area. 1D inversion of both theoretical and survey data is examined. The simplest use of the 1D inversion method is in providing an estimate of a half-space resistivity. This can be undertaken prior to multilayer inversion as an initial assessment. Underestimated altitude measurements also enter the problem and, in keeping with the Fraser pseudo-layer concept, an at-surface highly resistive layer of variable thickness can be usefully introduced as a constrained parameter. It is clearly difficult to ascribe levels of significance to a ‘measure’ of misfit contained in a negative apparent depth with the dimensions of metres. The reliability of 1D models is better assessed using a formal misfit parameter. With the misfit parameter in place, the example data suggest that the 1D inversion methods provide reliable apparent resistivity values with a higher resolution than the equivalent information from the Fraser half-space estimates.  相似文献   

16.
Time‐domain marine controlled source electromagnetic methods have been used successfully for the detection of resistive targets such as hydrocarbons, gas hydrate, or marine groundwater aquifers. As the application of time‐domain marine controlled source electromagnetic methods increases, surveys in areas with a strong seabed topography are inevitable. In these cases, an important question is whether bathymetry information should be included in the interpretation of the measured electromagnetic field or not. Since multi‐dimensional inversion is still not common in time‐domain marine controlled source electromagnetic methods, bathymetry effects on the 1D inversion of single‐offset and multi‐offset joint inversions of time‐domain controlled source electromagnetic methods data are investigated. We firstly used an adaptive finite element algorithm to calculate the time‐domain controlled source electromagnetic methods responses of 2D resistivity models with seafloor topography. Then, 1D inversions are applied on the synthetic data derived from marine resistivity models, including the topography in order to study the possible topography effects on the 1D interpretation. To evaluate the effects of topography with various steepness, the slope angle of the seabed topography is varied in the synthetic modelling studies for deep water (air interaction is absent or very weak) and shallow water (air interaction is dominant), respectively. Several different patterns of measuring configurations are considered, such as the systems adopting nodal receivers and the bottom‐towed system. According to the modelling results for deep water when air interaction is absent, the 2D topography can distort the measured electric field. The distortion of the data increases gradually with the enlarging of the topography's slope angle. In our test, depending on the configuration, the seabed topography does not affect the 1D interpretation significantly if the slope angle is less or around 10°. However, if the slope angle increases to 30° or more, it is possible that significant artificial layers occur in inversion results and lead to a wrong interpretation. In a shallow water environment with seabed topography, where the air interaction dominates, it is possible to uncover the true subsurface resistivity structure if the water depth for the 1D inversion is properly chosen. In our synthetic modelling, this scheme can always present a satisfactory data fit in the 1D inversion if only one offset is used in the inversion process. However, the determination of the optimal water depth for a multi‐offset joint inversion is challenging due to the various air interaction for different offsets.  相似文献   

17.
The structure of Cerdanya Basin (north-east of Iberian Peninsula) is partly known from geological cross sections, geological maps and vintage geophysical data. However, these data do not have the necessary resolution to characterize some parts of Cerdanya Basin such as the thickness of soft soil, geometry of bedrock or geometry of geological units and associated faults. For all these reasons, the main objective of this work is to improve this deficiency carrying out a detailed study in this Neogene basin applying jointly the combination of passive seismic methods (H/V spectral ratio and seismic array) and electromagnetic methods (audio-magnetotelluric and magnetotelluric method). The passive seismic techniques provide valuable information of geometry of basement along the profile. The maximum depth is located near Alp village with a bedrock depth of 500 m. The bedrock is located in surface at both sites of profile. The Neogene sediments present a shear-wave velocity between 400 and 1000 m/s, and the bedrock basement presents a shear-wave velocity values between 1700 and 2200 m/s. These results are used as a priori information to create a 2D resistivity initial model which constraints the inversion process of electromagnetic data. We have obtained a 2D resistivity model which is characterized by (1) a heterogeneous conductivity zone (<40 Ohm m) that corresponds to shallow part of the model up to 500 m depth in the centre of the profile. These values have been associated with Quaternary and Neogene sediments formed by silts, clays, conglomerates, sandstones and gravels, and (2) a deeper resistive zone (1000–3000 Ohm m) interpreted as Palaeozoic basement (sandstones, limestones and slates at NW and conglomerates and microconglomerates at SE). The resistive zone is truncated by a discontinuity at the south-east of the profile which is interpreted as the Alp-La Tet Fault. This discontinuity is represented by a more conductive zone (600 Ohm m approx.) and is explained as a combination of fractured rock and a fluid network. The result highlights that the support between different geophysical methods is essential in producing geophysical meaningful models.  相似文献   

18.
楚雄盆地由于其复杂的地质构造,基底深度及内部构造隆拗深度一直不明了.本文以楚雄盆地区域重力及航磁数据为基础,依据横贯东西的两条重磁电震剖面定量反演解释结果,并以云参1及楚参1钻井作为约束,分西区、中区及东区三个区块反演得到了楚雄盆地三叠系顶底界面深度,进而得到三叠系厚度分布特征.本次取得的成果为研究楚雄地区深部地质构造和主要沉积盆地厚度以及盆地基底深度提供了较为可靠的资料,可作为楚雄盆地油气评价的重要依据;同时也为复杂盆地地球物理-地质结构模型的构建提供了一条可行的思路.  相似文献   

19.
20.
The southern basin of Aqaba forms coastal aquifer and comprises an area of about 90 km2. Alluviums and Pleistocene deposits fill the basin bounded by Precambrian Granite Basement to the east and north. Hydrogeophysical investigations were carried out to investigate its groundwater potentials and characteristics. Direct modeling on Bouger and residual gravity revealed some local subsurface faults that form subbasins and sub-grabens in the body of the basin, each one of them is bounded by two to three faults. The spatial distribution of groundwater was found to be affected by the presence of the sub-basins and grabens. Geoelectrical layers have been vertically digitized and put in a four variable space-lattice, 2D slices of the different depths and 3D visualizations have been produced. The extents of seawater intrusion and zones of water qualities were delineated. The geoelectric inferred some local subsurface faults that were found in spatial correlation with those inferred from the gravity. A good combination was made between gravity and resistivity methods to confirm the 3D distribution of groundwater in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号