首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the results of the numerical simulation of the steady currents and waves field structures in the Vistula Lagoon under constant wind forcing. The currents?? structure is essentially 3-dimensional. The direction of the near-shore drift is determined by the wind and shore orientation, but the currents involve two layers in the deeper part of the basin: the upper layer downwind current and the upwind compensative current in the underlying layer. The wind waves depend upon the wind speed, fetch, and depth until the wind speed is less than 6?C8 m/s. As the wind increases, the fetch??s dependence disappears. The wind height depends only on the wind??s magnitude, and, under stormy conditions (when the wind??s speed exceeds 15 m/s), the waves are limited by the water depth alone.  相似文献   

2.
Expected seasonal variations in methane concentrations and diffusive fluxes from surficial sediments into near-bottom waters were investigated in autumn 2012 and winter 2013 in the Curonian and Vistula lagoons of the Baltic Sea, expanding on earlier findings for summer 2011. Methane concentrations in bottom sediments (upper ca. 2 cm) generally ranged from ca. 1 to 1,000 μmol/dm3, and in near-bottom waters from ca. 0 to 1 μmol/l. Highest concentrations were found in the Curonian Lagoon, plausibly explained by the influence of freshwater conditions and finer-grained, organic-rich sediments. Vistula Lagoon methane concentrations and fluxes are dampened by periodic saline water inflow from the open sea, intensifying sulphate reduction. Calculated diffusive methane fluxes from the upper sediment layer (usually 0–5 cm, i.e. excluding any fluffy layer) into near-bottom waters were highest—2.48 mmol/(m2 day)—in clayey silts of the Curonian Lagoon in autumn (September) 2012, contrasting strongly with the minimum value of 0.002 mmol/(m2 day) observed there in February 2013 under ice-covered conditions. Seasonal and even weekly variations in methane dynamics can be largely explained by two main drivers, i.e. wind and temperature, operating at various spatiotemporal scales via, for example, wind wave-induced resuspension of bottom sediments, and involving regional weather patterns including autumnal low-pressure zones over the Gulf of Gdansk.  相似文献   

3.
4.
5.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

6.
The spring-spawning Baltic Sea herring spawn in coastal areas that also serve as nursery areas for the young fish during their first summer. In a bay known as a herring spawning and nursery area, the pelagic fish abundance was quantified using hydroacoustics every second week from late spring to autumn in 2000 and 2001. A dense system of survey transects allowed determination of the acoustic index (the nautical area scattering coefficient) for fish abundance with high precision. The variation, expressed as the geostatistical coefficient of variation, was on average 5% both years and ranged from 3–11% (2000) and 3–8% (2001). Through the hydroacoustic data intra-annual dynamics in acoustic fish abundance, densities and size composition could be followed, which showed similar trends in both years. In spring and early summer acoustic fish densities were low, followed by a drastic, 20-fold increase in late summer. Hydroacoustic data and biological samples suggest that the increase was caused mainly by the recruitment of young-of-the-year herring to the acoustically assessable pelagic fish community. This age class is commonly not well represented in catches when using traditional sampling gears such as gill nets and trawls, and hydroacoustics may help to improve quantitative estimates of small juvenile fish in order to increase the understanding of biological processes in coastal nursery areas.  相似文献   

7.
A. B. Demidov 《Oceanology》2008,48(5):664-678
Seasonal variations in the surface chlorophyll a concentrations (Chl s) and the integrated primary production (PP inf) were investigated for ten regions of the Black Sea based on long term observations (1973–1997). Two or three maximums of both Chl s and PP inf were registered in most of the shelf regions (SR, <200 m), the continental slope (CS, 200–1500 m), and the deep regions (DSR >1500 m) in February–March, June–August, and October–November. Such a pattern suggests that the seasonal dynamics of PP inf strongly depend on the Chl s variability. The mean annual values of the PP inf comprised 130–420, 130–150, and 140–150 g C m?2 in the SR, CS, and DSR, respectively. These values are mainly typical of the eutrophic layer and the transition between the eutrophic and mesotrophic waters (SR) or for the upper boundary of the mesotrophic waters (CS and DSR). The maximal contribution of the wintertime (December–March) to the total PP inf values (40–42%) was observed in the DSR. In the SR and the adjacent eastern CS areas, the proportion of the PP inf summertime production (June–September) reaches 40–60% and is higher than the wintertime production. The lowest values of PP inf (9–17%) were produced in the spring and autumn periods. The total annual values of PP inf in the Black Sea are close to 50–70 Mt C.  相似文献   

8.
9.
Seasonal development of Calanus finmarchicus was studied in relation to the physical environment and phytoplankton bloom dynamics in the Norwegian Sea during eight basin-scale surveys from March to August 1995. Our main objective was to gain new knowledge about the life cycle of C. finmarchicus and its adaptation to the physical and biological environment of the Norwegian Sea. Time of spawning, estimated by temperature-dependent back-calculations from the occurrences of copepodite stage 1 (CIs), varied by water mass and occurred mainly during the phytoplankton pre-bloom and bloom periods. Recruitment to CI of the year's first generation (G1) generally occurred during the bloom and late bloom. The seasonal development of C. finmarchicus was progressively delayed from Coastal to Atlantic and to Arctic water, and from south to north within Atlantic and Arctic waters. This delay was partly linked to the phytoplankton bloom development that followed the same pattern, but development of C. finmarchicus also showed an increasing tendency to lag behind the phytoplankton development in colder waters. This may explain why C. finmarchicus are less successful in colder water. The consumption of nitrate was used as proxy for the seasonal history of phytoplankton development to aid interpretation of the lifecycle of C. finmarchicus. This approach allows us to align phytoplankton bloom and copepod development sequences despite temporal and geographical variation in bloom development, which otherwise tend to cause variability in quasi-synoptic and large-scale data. Two generations of C. finmarchicus were found in southern and northern regions of Coastal Water, and in southern Atlantic Water. In northern Atlantic Water and in Arctic Water, one generation was observed.  相似文献   

10.
Changes in the biomass and species composition of phytoplankton may reflect major shifts in environmental conditions. We investigated relationships between the late summer biomass of different phytoplankton taxa and environmental factors, and their long-term (1979–2003) trends in two areas of the Baltic Sea, the northern Baltic proper (NBP) and the Gulf of Finland (GF), with statistical analyses. An increasing trend was found in late summer temperature and chlorophyll a of the surface water layer (0–10 m) in both areas. There was also a significant decrease in summer salinity and an increase in winter dissolved inorganic nitrogen to phosphorus (DIN:DIP) ratio in the NBP, as well as increases in winter DIN concentrations and DIN:SiO4 ratio in the GF. Simultaneously, the biomass of chrysophytes and chlorophytes increased in both areas. In the NBP, also the biomass of dinophytes increased and that of euglenophytes decreased, whereas in the GF, cyanobacteria increased and cryptophytes decreased. Redundancy analysis (RDA) indicated that summer temperature and winter DIN concentration were the most important factors with respect to changes in the phytoplankton community structure. Thus, the phytoplankton communities seem to reflect both hydrographic changes and the ongoing eutrophication process in the northern Baltic Sea.  相似文献   

11.
In 2002–2008, seasonal (April–November) monitoring of the phytoplankton in the Russian part of the Curonian Lagoon at five fixed sites was performed. A total of 91 Cyanobacteria, 100 Bacillariophyta, 280 Chlorophyta, 21 Cryptophyta, and 24 Dinophyta species were found. Six potentially toxic species of cyanobacteria: Aphanizomenon flos-aquae, Anabaena sp., Microcystis aeruginosa, M. viridis, M. wesenbergii, and Planktothrix agardhii dominated the phytoplankton biomass and caused water blooms. The seasonal average phytoplankton biomass ranged from 30 to 137 g/m3. The cyanobacteria’s biomass varied from 10 to 113 g/m3 forming 30–82% of the total with a mean of 50%. With the aid of genetic markers (microcystin (mcy) and nodularin synthetases), six variants of the microcystin-producing gene mcyE from the genus Microcystis were identified. Due to the intensive and lengthy blooms of potentially toxic and toxigenic cyanobacteria, the environmental conditions in the Curonian Lagoon appear unfavorable. The water should be monitored for cyanotoxins with analytical methods in order to determine if the area is safe for recreational use.  相似文献   

12.
Seasonal variation of the integrated primary production (IPP) and surface chlorophyll (Chl0) in different regions of the Kara Sea was studied from satellite data obtained by the MODIS-Aqua colour scanner and averaged for 2003–2015. The minimum variation of Chl0 concentration during the growing season (from April to October) was 1.5 times in southwestern region and 2 times in the northern region of the sea. It was found that the Chl0 concentration increased slightly in all regions by the end of the growing season. The maximum IPP value recorded in June coincided with the peak level of photosynthetically active radiation (PAR) and maximum river discharge. The IPP value varied in a wider range compared with the Chl0 concentration. The ratio of the maximum and minimum monthly average IPP values varied from 8.9 times in Southwestern region to 11.7 times in the Northern region of the sea. The average increase in the Chl0 concentration was 1.7 times (from 0.78 mg/m3 in April to 1.29 mg/m3 in October). The IPP value varied by a factor of 10.7 (from 26 mg C/m2 per day in October to 279 mg C/m2 per day in June). The article also discusses the influence of water column stratification, the concentration of nutrients, the PAR level, and river discharge on the seasonal IPP dynamics in the Kara Sea.  相似文献   

13.
Primary production, nutrient concentrations, phytoplankton biomass (incl. chlorophyll a) and water transparency (Secchi depth), are important indicators of eutrophication. Earlier basin-wide primary production estimates for the Baltic Sea, a shallow shelf sea, were based mainly on open-sea data, neglecting the fundamentally different conditions in the large river plumes, which might have substantially higher production. Mean values of the period 1993–1997 of nutrient concentrations (phosphate, nitrate, ammonium and silicate), phytoplankton biomass, chlorophyll a (chl a) concentration, turbidity and primary production were calculated in the plumes of the rivers Oder, Vistula and Daugava and Klaipeda Strait as well as the open waters of the Arkona Sea, Bornholm Sea, eastern Gotland Sea and the Gulf of Riga. In the plumes, these values, except for primary production, were significantly higher than in the open waters. N:P ratios in the plumes were >16 (with some exceptions in summer and autumn), indicating potential P-limitation of phytoplankton growth, whereas they were <16 in the open Baltic Proper, indicating potential N-limitation. On the basis of in situ phytoplankton primary production, phytoplankton biomass and nutrient concentrations, the large river plumes and the Gulf of Riga could be characterized as eutrophic and the outer parts of the coastal waters and the open sea as mesotrophic. Using salinity to define the border of the plumes, their mean extension was calculated by means of a circulation model. Taking into account the contribution of coastal waters, the primary production in the Baltic Proper and the Gulf of Riga was 42·6 and 4·3×106 t C yr−1, respectively. Hence, an annual phytoplankton primary production in the whole Baltic Sea was estimated at 62×106 t C yr−1. The separate consideration of the plumes had only a minor effect on the estimation of total primary production in comparison with an estimate based on open sea data only. There is evidence for a doubling of primary production in the last two decades. Moreover, a replacement of diatoms by dinoflagellates during the spring bloom was noticed in the open sea but not in the coastal waters. A scheme for trophic classification of the Baltic Sea, based on phytoplankton primary production and biomass, chl a and nutrient concentrations, is proposed.  相似文献   

14.
A model of Holocene evolution for the coastal zone is discussed using the example of the geological-geomorphological structure of the Vistula spit. The conclusion is drawn that there is a significant role played by the aeolian factor in the formation of the studied area. The entire spit, excluding beaches, the near-gulf terrace, and several remnants of the ancient deltaic plain, is mostly composed by aeolian sands. One of these remnants is found in the near-gulf part of the spit near Cape Vysokii.  相似文献   

15.
Sendai Bay is located on the Pacific coast of northern Japan and suffered serious damage following the 2011 off the Pacific coast of Tohoku earthquake and tsunami in March 2011. To assess the impact on the marine ecosystem, information was needed on the phytoplankton communities and their seasonal variation. However, such information was limited. Therefore, an intensive monitoring of the phytoplankton was carried out from March 2012 to April 2014. Seasonal variation of the phytoplankton community was similar at coastal and offshore stations. Total phytoplankton biomass, based on Chl a concentration, peaked in spring and then decreased to a minimum in summer, before gradually increasing during early winter and peaking again in the following spring. This seasonal pattern was consistent with previous studies conducted before the earthquake and tsunami. Also, size structure of the phytoplankton community and its four main groups was estimated from the size-fractioned samples of Chl a. Our results also showed that the spring bloom consisted of large diatoms, with their growth ceasing due to nitrogen depletion. The bloom was followed by a summer period where cyanobacteria and picoeukaryote became dominant, with high cell densities in spite of low nutrient concentrations. In addition, sporadic environmental changes, such as those following typhoons, were observed. These resulted in large increases/decreases in individual phytoplankton groups.  相似文献   

16.
17.
18.
We investigated population dynamics, growth and feeding of an omnivorous mysid, Paramysis lacustris, performing seasonal horizontal migrations in the Curonian Lagoon. In autumn, increased predation pressure and deteriorated feeding conditions, due to zooplankton and phytoplankton decline in the open water, forces mysids to migrate to the shoreline, where large amounts of decaying submersed vegetation occur at the end of plant growth season. Using stable isotope analysis and mixing models, we evaluated relative importance of decaying submersed macrophytes, lagoon phytoplankton and mesozooplankton in the diet of mysids during this period. In September–November, mysids actively grew and produced three cohorts. Specific growth rates of adults (10.9 ± 1.9 mm) and subadults (6 ± 0.5 mm) were 3 and 9% DW d−1, respectively, resulting in population somatic production of 36 g DW m−2. Both δ15N and δ13C of mysids varied in concert with those in suspended and bottom particulate organic matter (POM) and mesozooplankton. The mixing models estimated that 45% of mysid diets were composed of bottom POM originated from the decaying macrophyte Potamogeton perfoliatus, 45% by suspended POM largely consisting of phytoplankton, while mesozooplankton contributed less than 10% of the diet. This diet composition differs from that in summer, when mysids rely mostly on zooplankton and phytoplankton. Therefore, mysid horizontal migrations and their ability to efficiently utilize littoral detritus improve the efficiency of macrophyte detritus transfer up the food chain and inshore/offshore habitat coupling in the Curonian Lagoon.  相似文献   

19.
Based upon four decades of observations in the northwestern part of the Japan Sea, the seasonal and inter-annual variations of zooplankton abundance and species composition in the epipelagic layer are considered. Seasonal characteristics of the zooplankton community are described in detail for five domains that occur within this part of the Japan Sea. Inter-decadal variation was not significant, but inter-annual variation was considerable and generally opposite to water temperature changes in the upper layer. Exceptional years such as 1996 were noted when a maximum abundance of zooplankton in summer occurred along with a slowing of the seasonal pattern of succession.  相似文献   

20.
黄海冷水团海域浮游植物磷胁迫的季节变动   总被引:2,自引:0,他引:2  
The Yellow Sea is located between the China Mainland and the Korean Peninsula, representing a typical shallow epicontinental sea. The Yellow Sea Cold Water Mass(YSCWM) is one of the most important physical features in the Yellow Sea. The characteristics of vertical profiles and seasonal variations of biogenic elements in the YSCWM may lead the variations of nutrient availability(e.g., phosphorus) and phosphorus stress of phytoplankton. In this study, the authors surveyed the seasonal variations of phytoplankton phosphorus stress with emphasis on the effect of the YSCWM during the four cruises in April and October 2006, March and August 2007. Using both bulk and single-cell alkaline phosphatase activity(APA) assays, this study evaluated phosphorus status of phytoplankton community, succession of phytoplankton community and ecophysiological responses of phytoplankton to phosphorus in the typical region of the YSCWM. With the occurrence of the YSCWM, especially the variations of concentration of dissolved inorganic phosphorus(DIP), the results of bulk APA appeared corresponding seasonal variations. Along Transects A and B, the mean APA in August was the highest, and that in March was the lowest. According to the ELF-labeled assay's results, seasonal variations of the ELF-labeled percentages within dominant species indicated that diatoms were dominant in March, April and October, while dinoflagellates were dominant in August. During the four cruises, the ELF-labeled percentages of diatoms except Paralia sulcata showed that diatoms were not phosphorus deficient in April 2006 at all, but suffered from severe phosphorus stress in August 2007. In comparison, the ELF-labeled percentages of dinoflagellates were all above 50% during the four time series, which meant dinoflagellates such as Alexandrium and Scrippsiella, sustained perennial phosphorus stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号