首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new variety of matrices based on synthetic phases whose structure is close to that of murataite (a natural mineral) is proposed for immobilization of nuclear wastes. Murataite is Na, Ca, REE, Zn, and Nb titanate with a structure derived from the fluorite lattice. This very rare mineral was found in alkali pegmatites from Colorado in the United States and the Baikal region in Russia. The synthetic murataite-like phases contain manganese instead of zinc, as well as actinides and zirconium instead of sodium, calcium, and niobium. Varieties with threefold, as in the mineral, and five-, seven-, and eightfold repetition of the lattice relative to the fluorite cell have been established. Correspondingly, the structural varieties M3, M5, M7, and M8 are recognized among the synthetic murataites. A decrease in the contents of actinides, rare earth elements, and zirconium occurs in the series M7-M5-M8-M3, along with enrichment in Ti, Al, Fe, and Ga. Murataite-based ceramics are characterized by high chemical and radiation stability. The rate of U, Th, and Pu leaching with water at 90°C in static and dynamic tests is 10?6–10?5 g/m2 per day. These values are lower than the leaching rate of other actinide confinement matrices, for example, zirconolite-or pyrochlore-based. Murataite is close to other titanates in its radiation resistance. At 25°C, amorphization of its lattice is provided by a radiation dose of 2 × 1018 α decays/g, or 0.2 displacements/atom. Murataite-based matrices are synthesized within a few hours by cold compacting combined with sintering at 1300°C or by melting at 1500–1600°C and subsequent crystallization. The melting technology, including induction smelters with a cold crucible, makes it possible to produce samples with zonal murataite grains. The inner zone of such grains is composed of structural variety M5 or M7; the intermediate zone, of M8; and the outer zone, of M3. The contents of actinides, zirconium, and rare earth elements reach a maximum in the inner zone and drop to a minimum in the outer zone, while the amounts of nonradioactive elements—Ti, Al, Fe, and Ga—vary conversely. The U, Th, and Pu contents in the inner and outer zones differ by three to five times. Such a distribution precludes removal of actinides by interaction of the matrix with solution after its underground disposal. Individual actinides (Np, Pu, Am); the actinide-zirconium-rare earth fraction of high-level radioactive wastes (HLW); Am-Ga residues of weapons plutonium reprocessing with its conversion into U-Pu mixed oxide (MOX) fuel; and other sorts of HLW enriched in actinides, REE, and products of corrosion (Mn, Fe, Al, Zr) can be incorporated into a murataite-based matrix. As much as 350 kg of HLW components can be included in 1 t of such a ceramic. An actinide matrix that is composed of titanates with a pyrochlore structure is its nearest analogue. The advantage of murataite in comparison with pyrochlore consists in its universal character; i.e., a murataite-based matrix can be used for utilization of a wider range of actinide-bearing highly radioactive wastes.  相似文献   

2.
The experiments of the dissolution kinetics of fluorite were performed in aqueous HCl solutions over the temperature range of 25–100 °C using a flow-through experimental apparatus. With a constant input of aqueous HCl solution through the reactor, output concentrations of the dissolved species Ca, F, Cl vary with flow rate, as well as with the surface compositions. Measured output concentrations of dissolved species and the pH can be used to determine a rate law for fluorite dissolution. Fluorite dissolution rates are found to be pH dependent. Usually, dissolution rates of fluorite decreases with increasing dissolved Ca in the output solution at 25 and 100 °C. Dissolution rate can be expressed as
(1a)
where k is the rate constant and α is the order with respect to the hydrogen ion activity vs. the activity of dissolved Ca. The α was obtained from kinetic experiments. For the fluorite sample passed through 18–35 mesh, α =1.198 at 100 °C and k = 10−0.983, while fluorite dissolved in HCl–H2O solution at pH 2.57 of input solution. Adsorption of a proton and Cl−1onto the fluorite surface, surface cation exchange and the formation of the surface complex Ca(F, Cl)2 and/or (H2x, Ca1−x)(F, Cl)2 control dissolution rates. Investigation of the fluorite surface before and after dissolution by using X-ray photoelectron spectroscopy (XPS) indicate that surface modifications affect reaction rates.  相似文献   

3.
Minerals of olivine–melilite and olivine–monticellite rocks from the Krestovskiy massif contain primary silicate-salt, carbonate-salt, and salt melt inclusions. Silicate-salt inclusions are present in perovskite I and melilite. Thermometric experiments conducted on these inclusions at 1,230–1,250°C showed silicate–carbonate liquid immiscibility. Globules of composite carbonate-salt melt rich in alkalies, P, S, and Cl separated in silicate melt. Carbonate salt globules in some inclusions from perovskite II at 1,190–1,200°C separated into immiscible liquid phases of simpler composition. Carbonate-salt and salt inclusions occur in monticellite, melilite, and garnet and homogenize at close temperatures (980–780°C). They contain alkalies, Ca, P, SO3, Cl, and CO2. According to the ratio of these components and predominance of one of them, melt inclusions are divided into 6 types: I—hyperalkaline (CaO/(Na2O+K2O)≤1) carbonate melts; II—moderately alkaline (CaO/(Na2O+K2O)>1) carbonate melts; III—sulfate-alkaline melts; IV—phosphate-alkaline melts; V—alkali-chloridic melts, and VI—calc-carbonate melts. Joint occurrence of all the above types and their syngenetic character were established. Some inclusions demonstrated carbonate-salt immiscibility phenomena at 840–800°C. A conclusion in made that the origin of carbonate melts during the formation of intrusion rocks is related to silicate–carbonate immiscibility in parental alkali-ultrabasic magma. The separated carbonate melt had a complex alkaline composition. Under unstable conditions the melt began to decompose into simpler immiscible fractions. Different types of carbonate-salt and salt inclusions seem to reflect the composition of these spatially isolated immiscible fractions. Liquid carbonate-salt immiscibility took place in a wide temperature range from 1,200–1,190°C to 800°C. The occurrence of this kind of processes under macroconditions might, most likely, cause the appearance of different types of immiscible carbonate-salt melts and lead to the formation of different types of carbonatites: alkali-phosphatic, alkali-sulfatic, alkali-chloridic, and, most widespread, calcitic ones.  相似文献   

4.
Several F, Pb, Zn and Ba deposits are located in the province of Zaghouan in north-eastern Tunisia. They are hosted in Lower Liassic or Upper Jurassic reef limestones, and the overlying condensed Carixian phosphatic limestones and Campanian marls, respectively. The mineralization occurs in three types of orebodies: stratiform replacement heaps and lenses (Jebel Stah and Hammam Zriba), breccia fillings and dissolution void fillings (Sidi Taya) and lodes (Jebel Oust). More than one generation of fluorite is observed in the stratiform deposits. Microthermometric analyses of the inclusion fluids observed in fluorite and quartz show that the economic concentrations of fluorite have deposited from moderate to highly saline (12–22.5 wt% NaCl equivalents) hydrothermal (110–160 °C) mineralizing fluids at the center (Jebel Stah, Sidi Taya) and to the east of the province (Hammam Zriba). Late remobilizations, observed in the stratiform deposits, are related to the circulation of a warmer (up to 185 °C) but less saline (10 wt% NaCl equivalents) fluid (Jebel Stah) and more saline (12–22 wt% NaCl equivalents) fluid (Hammam Zriba). The highest temperature (up to 250 °C) and salinity (32–34 wt% NaCl equivalents) are observed to the west of the province of Zaghouan (Jebel Oust). Less saline (3–6 wt% NaCl equivalents) and moderately hot to hot fluids (up to 220 ± 20 °C) and rich in gaseous CO2 invade most of the ore deposits in later stages and give rise to the massive quartz within fractures at Jebel Stah. Chemical analyses of the fluids extracted from the inclusions occuring in fluorite show compositions dominated by the presence of Na+, Ca2+ and Cl ionic species and allow the mean temperature of the fluids in the source reservoir to be estimated as 275 ± 25 °C. The circulation of the ore-forming fluids is triggered by a regional tectonic extensional phase which occurs within the post-Jurassic to ante-Miocene time interval. The deposition of the economic concentrations of fluorite resulted from the decrease in pressure and temperature of the hydrothermal brines (Jebel Oust), along with the increase in the dissolved calcium activity (Jebel Stah and Sidi Taya), or a decrease in salinity due to the mixing with a hot, less saline and Na-poor, Ca-rich fluid (Hammam Zriba). The mineralogical associations (CaF2, PbS, ZnS, BaSO4) hosted within carbonate rocks, the temperatures and the salinities of the fluids that gave rise to the more important ore deposits (110–160 °C and 12–22.5 wt% NaCl equivalents), their composition (Na, Ca, Cl) and the molar ratios between the major ionic species, as well as the presence of liquid hydrocarbons in the mineralizing fluids, show that the ore deposits of the province of Zaghouan belong to the carbonate-hosted F, Pb, Zn, Ba Mississippi Valley-type deposits. Received: 23 June 1995 / Accepted: 18 November 1996  相似文献   

5.
Metabasites with eclogite facies relics occur in northern Sardinia as massive to strongly foliated lenses or boudins embedded within low- to medium-grade rocks (Anglona) and migmatites (NE Sardinia). U–Pb zircon dating yielded 453 ± 14, 457 ± 2 and 460 ± 5 Ma as the protolith ages; 400 ± 10 and 403 ± 4 Ma have been interpreted as the ages of the HP event and 352 ± 3 and 327 ± 7 Ma as the ages of the main Variscan retrograde events. A pre-eclogite stage is documented by the occurrence of tschermakite, zoisite relics within garnet porphyroblasts (Punta de li Tulchi) and an edenite–andesine inclusion within a relict kyanite porphyroblast (Golfo Aranci). Four main metamorphic stages have been distinguished in the eclogite evolution: (1) eclogite stage, revealed by the occurrence of armoured omphacite relics within garnet porphyroblasts. The Golfo Aranci eclogites also include kyanite, Mg-rich garnet and pargasite; (2) granulite stage, producing orthopyroxene and clinopyroxene–plagioclase symplectites replacing omphacite. At Golfo Aranci, the symplectitic rims around relict kyanite consist of sapphirine, anorthite, corundum and spinel; (3) amphibolite stage, leading to the formation of amphibole–plagioclase kelyphites between garnet porphyroblasts and pyroxene–plagioclase symplectites and to the growth of cummingtonite on orthopyroxene. Tschermakite to Mg-hornblende, plagioclase, cummingtonite, ilmenite, titanite and biotite are coexisting phases; (4) greenschist to sub-greenschist stage, defined by the appearance of actinolite, chlorite, epidote ss, titanite, sericite and prehnite. The following PT ranges have been estimated for the different stages. Eclogite stage 550–700°C; 1.3–1.7 GPa; granulite stage 650–900°C; 0.8–1.2 GPa, clustering in the range 1.0–1.2 GPa; amphibolite stage 550–740°C; 0.3–0.7 GPa; greenschist stage 300–400°C; 0.2–0.3 GPa. Comparable ranges characterise the other Variscan massifs in Europe; eclogite stage: T = 530–800°C; P from 0.7–1.1 to 1.7 ± 0.3 GPa; granulite stage T = 760–870°C and P from 1.1–1.4 to 7.2–9.9 GPa, clustering around 1.0–1.2 GPa. Whole-rock chemistry: Sardinian eclogites are N- to T-MORB; European ones N- to E-MORB or calc-alkaline.  相似文献   

6.
To estimate the behavior of Au, Pd, REE, and Y in magmatic and postmagmatic processes, a series of experimental studies on the solubility of noble metals and REE in magma, magmatic fluid, and hydrothermal solutions has been performed in wide temperature and pressure ranges (300–400°C, 860–1350°C; 1–14 kbar). The coefficients of Au and Pd partitioning (D F/L) between fluid and tholeiitic melt have been determined. Depending on P, T, and the composition of the system, they vary from 1 to 11 for Au and 0.02 to 1 for Pd. The phase solubility technique was used to determine Au and Pd solubility in hydrothermal fluid. The effects of temperature, composition, and fluid acidity on Au and Pd solubility have been estimated. The high solubility of these metals in aqueous chloride solutions has been established for both Au (28–803 mg/kg at T = 300°C, 305–1123 mg/kg at T = 350°C, and 330–1400 mg/kg at T = 400°C) and Pd (40–126 mg/kg at T = 300°C, 62–152 mg/kg at T = 350°C, and 20–210 mg/kg at T = 400°C). The coefficients of REE and Y partitioning (D F/L) between fluid and tholeiitic or alkaline melts have been determined. They vary from 0.00n to 2 depending on P, T, and fluid composition. The experimental data on Au and Pd solubility in solutions and magmatic fluids and the wide variation of REE D F/L between fluid and melt show that magmatic and hydrothermal fluids are efficient agents of Au, Pd, and REE transfer and fractionation. The obtained experimental data were used for elucidating sources of fluids and their role in the genesis of Au-Pd-REE occurrences in the Subpolar Urals.  相似文献   

7.
A set of Palaeozoic diopside–titanite veins are present in Mesoproterozoic metagranites and metasediments that constitute the basement (Mt Painter Inlier) of the Adelaide Fold Belt (South Australia). These massive veins (up to 1 m) of pegmatitic nature contain large crystals of diopside, LREE–Y-enriched titanite (up to 40 cm in length) and minor amounts of quartz. They can be used to trace the system’s development from a high-temperature magmatic stage through to a massive hydrothermal event. The pegmatitic origin of these veins is evident from a complex fluid-melt inclusion assemblage, consisting of a highly saline inhomogeneous fluid and relicts of melt. Immiscibility of melt and heterogeneous highly saline fluids (exceeding 61 eq. mass% NaCl) is preserved in primary inclusions in diopside and secondary inclusions in titanite, indicating relatively shallow conditions of formation (510 ± 20°C and 130 ± 10 MPa). Graphic intergrowth of diopside and albite occurs at the contact with granitic pegmatites. The system evolved into hydrothermal conditions, which can be deduced from a later population of only fluid inclusions (homogeneous and less saline, ≈ 40 eq. mass% NaCl), trapped around 350 ± 20°C and 80 ± 10 MPa. During quartz crystallization, the conditions moved across the halite liquidus resulting in a heterogeneous mixture of brine and halite crystals, which were trapped at 200 ± 20°C and 50 ± 10 MPa. Brecciation and a palaeo-geothermal system overprinted the pegmatitic veins with an epithermal hematite–quartz assemblage and lesser amounts of bladed calcite and fluorite, in an intermittently boiling hydrothermal system of fairly pure H2O at 100–140°C and 1–5 MPa. Remobilization of LREEs and Y from titanite and/or the granitic host rock is evidenced by precipitation of apatite, allanite and wakefieldite in an intermediate stage. Occasional incorporation of radioactive elements or minerals, presumably U-rich, in the fluorite is responsible for radiolysis of H2O to H2.  相似文献   

8.
Deposition of quartz–molybdenite–pyrite–topaz–muscovite–fluorite and subsequent hübnerite and sulfide–fluorite–rhodochrosite mineralization at the Sweet Home Mine occurred coeval with the final stage of magmatic activity and ore formation at the nearby world-class Climax molybdenum deposit about 26 to 25 m.y. ago. The mineralization occurred at depths of about 3,000 m and is related to at least two major fluid systems: (1) one dominated by magmatic fluids, and (2) another dominated by meteoric water. The sulfur isotopic composition of pyrite, strontium isotopes and REY distribution in fluorite suggest that the early-stage quartz–molybdenite–pyrite–topaz–muscovite–fluorite mineral assemblage was deposited from magmatic fluids under a fluctuating pressure regime at temperatures of about 400°C as indicated by CO2-bearing, moderately saline (7.5–12.5 wt.% NaCl equiv.) fluid inclusions. LA-ICPMS analyses of fluid inclusions in quartz demonstrate that fluids from the Sweet Home Mine are enriched in incompatible elements but have considerably lower metal contents than those reported from porphyry–Cu–Au–Mo or Climax-type deposits. The ore-forming fluid exsolved from a highly differentiated magma possibly related to the deep-seated Alma Batholith or distal porphyry stock(s). Sulfide mineralization, marking the periphery of Climax-type porphyry systems, with fluorite and rhodochrosite as gangue minerals was deposited under a hydrostatic pressure regime from low-salinity ± CO2-bearing fluids with low metal content at temperatures below 400°C. The sulfide mineralization is characterized by mostly negative δ34S values for sphalerite, galena, chalcopyrite, and tetrahedrite, highly variable δ18O values for rhodochrosite, and low REE contents in fluorite. The Pb isotopic composition of galena as well as the highly variable 87Sr/86Sr ratios of fluorite, rhodochrosite, and apatite indicates that at least part of the Pb and Sr originated from a much more radiogenic source than Climax-type granites. It is suggested that the sulfide mineralization at the Sweet Home Mine formed from magmatic fluids that mixed with variable amounts of externally derived fluids. The migration of the latter fluids, that were major components during late-stage mineralization at the Sweet Home Mine, was probably driven by a buried magmatic intrusion.  相似文献   

9.
The Lianhuashan tungsten deposit occurs in the volcanic terrain in the coastal area of Southeast China,where rhyolite,quartz porphyry and granite consitute a complee magmatic series.The orebodies are located in the endo-and exo-contacts between the quartz porphyry and the metasandstone of the Xiaoping coal measues.Hongenization temperatures of melt inclusions in zircon and quartz are 1100℃and 1050℃ for rhyolite,1000℃ and 860℃for quartz porphyry,and 950-1000℃and 820℃ for granite,respectively,demonstrating that the rockforming temperatures dropped successively from the eruptive to the intrusive rocks and that the homogenization temperatures of melt inclusions in zircon are 50-180℃higher than those in quartz.Homogenization temperatures of gas-liquid inclusions in quartz are 230-520℃(mostly 230-270℃)for quartz porphyry,200-450℃(mostly 200-360℃)for ore-bearing quartz veins,150-210℃for granite 170-200℃ for the vein quartz in it.Quartz from the quartz porphyry and from the ore-earing quartz veins show similar characteristics in inclusion type and homogenization temperature,indicating that intergranular solutions must have been formed upon cooling of magma and that ore-forming solutions for the tungstem mineralization were evolved mainly from ore-bearing intergranular solutions in the quartz porphyry.  相似文献   

10.
The beginning of melting in the system Qz-Or-Ab-An-H2 O was experimentally reversed in the pressure range kbar using starting materials made up of mixtures of quartz and synthetic feldspars. With increasing pressure the melting temperature decreases from 690° C at 2 kbar to 630° C at 17 kbar in the An-free alkalifeldspar granite system Qz-Or-Ab-H2O. In the granite system Qz-Or-Ab-An-H2O the increase of the solidus temperature with increasing An-content is only very small. In comparison to the alkalifeldspar granite system the solidus temperature increases by 3° C (7° C) if albite is replaced by plagioclase An 20 (An 40). The difference between the solidus temperatures of the alkalifeldspar granite system and of quartz — anorthite — sanidine assemblages (system Qz-Or-An-H2O) is approximately 50° C. With increasing water pressures plagioclase and plagioclase-alkalifeldspar assemblages become unstable and are replaced by zoisite+kyanite+quartz and zoisite+muscovite-paragonitess +quartz, respectively. The pressure stability limits of these assemblages are found to lie between 6 and 16 kbar at 600° C. At high water pressures (10–18 kbar) zoisite — muscovite — quartz assemblages are stable up to 700 and 720° C. The solidus curve of this assemblage is 10–20° C above the beginning of melting of sanidine — zoisite — muscovite — quartz mixtures. The amount of water necessary to produce sufficient amounts of melt to change a metamorphic rock into a magmatic looking one is only small. In case of layered migmatites it is shown that 1 % of water (or even less) is sufficient to transform portions of a gneiss into (magmatic looking) leucosomes. High grade metamorphic rocks were probably relatively dry, and anatectic magmas of granitic or granodioritic composition are usually not saturated with water.  相似文献   

11.
The Amassia–Stepanavan blueschist-ophiolite complex of the Lesser Caucasus in NW Armenia is part of an Upper Cretaceous-Cenozoic belt, which presents similar metamorphic features as other suture zones from Turkey to Iran. The blueschists include calcschists, metaconglomerates, quartzites, gneisses and metabasites, suggesting a tectonic mélange within an accretionary prism. This blueschist mélange is tectonically overlain by a low-metamorphic grade ophiolite sequence composed of serpentinites, gabbro-norite pods, plagiogranites, basalts and radiolarites. The metabasites include high-P assemblages (glaucophane–aegirine–clinozoisite–phengite), which indicate maximal burial pressure of ∼1.2 GPa at ∼550°C. Most blueschists show evidence of greenschist retrogression (chlorite—epidote, actinolite), but locally epidote-amphibolite conditions were attained (garnet—epidote, Ca/Na amphibole) at a pressure of ∼0.6 GPa and a temperature of ∼500°C. This LP–MT retrogression is coeval with exhumation and nappe-stacking of lower grade units over higher grade ones. 40Ar/39Ar phengite ages obtained on the high-P assemblages range between 95 and 90 Ma, while ages obtained for epidote-amphibolite retrogression assemblages range within 73.5–71 Ma. These two metamorphic phases are significant of (1) HP metamorphism during a phase of subduction in the Cenomanian–Turonian times followed by (2) exhumation in the greenschist to epidote-amphibolite facies conditions during the Upper Campanian/Maastrichtian due to the onset of continental subduction of the South Armenian block below Eurasia.  相似文献   

12.
The basic and ultrabasic alkaline rocks of western Makhtesh Ramon, Israel crop out in numerous lava flows and subvolcanic bodies. The rock suite is composed of tephrite, basanite, basanitic nephelinite, analcimite, olivine nephelinite, and melilite-olivine nephelinite and in many outcrops is represented by glass-bearing varieties. Melt and fluid inclusions have been studied in olivine, clinopyroxene, and plagioclase phenocrysts. The EP, SIMS and microthermometry methods were used for inclusion study. The geochemical data obtained on glasses of melt inclusions (major, REE, trace elements, volatiles) are compared with the data on whole-rock and groundmass glass compositions. The compositions of melt inclusions reflect the different stages of rock crystallization: the initial products of crystallization are similar to whole-rock compositions whereas final portions of melts are usually enriched in SiO2, Al2O3, and alkalis, and depleted in mafic components. The data on contemporaneous melt and CO2 inclusions were used for the evaluation of the PT conditions of rock generation. The following parameters were obtained: tephrite: P = 6.3–7.7 kbar and T = 1,150–1,250°C; basanite: P = 6.6–9.2 kbar and T = 1,150–1,250°C; olivine and analcime-olivine nephelinite: P = 5.6–8.2 kbar and T = 1,150–1,250°C; melilite-olivine nephelinite: 4.0–5.4 kbar and T mainly between 1,150 and 1,200°C. Magma genesis was restricted to PT conditions of spinel- and plagioclase-lherzolite fields. These data suggest the shallowest depth of magma genesis occurred in Makhtesh Ramon compared to other occurrences of Early Cretaceous magmatism at the Middle East. Differences in the degree of batch partial melting of the same source rocks best explain the diversity of the igneous suite in western Makhtesh Ramon.  相似文献   

13.
 The second-order elastic constants of CaF2 (fluorite) have been determined by Brillouin scattering to 9.3 GPa at 300 K. Acoustic velocities have been measured in the (111) plane and inverted to simultaneously obtain the elastic constants and the orientation of the crystal. A notable feature of the present inversion is that only the density at ambient condition was used in the inversion. We obtain high-pressure densities directly from Brillouin data by conversion to isothermal conditions and iterative integration of the compression curve. The pressure derivative of the isentropic bulk modulus and of the shear modulus determined in this study are 4.78 ± 0.13 and 1.08 ± 0.07, which differ from previous low-pressure ultrasonic elasticity measurements. The pressure derivative of the isothermal bulk modulus is 4.83 ± 0.13, 8% lower than the value from static compression, and its uncertainty is lower by a factor of 3. The elastic constants of fluorite increase almost linearly with pressure over the whole investigated pressure range. However, at P ≥ 9 GPa, C 11 and C 12 show a subtle structure in their pressure dependence while C 44 does not. The behavior of the elastic constants of fluorite in the 9–9.3 GPa pressure range is probably affected by the onset of a high-pressure structural transition to a lower symmetry phase (α-PbCl2 type). A single-crystal Raman scattering experiment performed in parallel to the Brillouin measurements shows the appearance of new features at 8.7 GPa. The new features are continuously observed to 49.2 GPa, confirming that the orthorhombic high-pressure phase is stable along the whole investigated pressure range, in agreement with a previous X-ray diffraction study of CaF2 to 45 GPa. The high-pressure elasticity data in combination with room-pressure values from previous studies allowed us to determine an independent room-temperature compression curve of fluorite. The new compression curve yields a maximum discrepancy of 0.05 GPa at 9.5 GPa with respect to that derived from static compression by Angel (1993). This comparison suggests that the accuracy of the fluorite pressure scale is better than 1% over the 0–9 GPa pressure range. Received: 10 July 2001 / Accepted: 7 March 2002  相似文献   

14.
Located adjacent to the Banded Gneissic Complex, Rampura–Agucha is the only sulfide ore deposit discovered to date within the Precambrian basement gneisses of Rajasthan. The massive Zn–(Pb) sulfide orebody occurs within graphite–biotite–sillimanite schist along with garnet–biotite–sillimanite gneiss, calc–silicate gneisses, amphibolites, and garnet-bearing leucosomes. Plagioclase–hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720–780°C, whereas temperatures obtained from Fe–Mg exchange between garnet and biotite (580–610°C) in the pelites correspond to postpeak resetting. Thermodynamic considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise PTt path with peak PT of ∼6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f(S 2)] range of 352°C (−8.2) to 490°C (−4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite, pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb–Ag-rich sulfosalt-bearing veins and pods that are irregularly distributed within the hanging wall calc–silicate gneisses show no evidence of deformation and metamorphism. The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn–jamesonite, Cu-free meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite and semseyite in the Pb–Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena–sphalerite interfacial angles, (2) presence of multiphase sulfide–sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite) without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS–Fe0.96S–ZnS–(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura–Agucha deposit.  相似文献   

15.
Part I: Chemical and structural effects of cation-exchange Attempts were made to prepare, by appropriate exchange methods, homoionic samples of phillipsite, gismondite, harmotome, chabazite and gmelinite containing Ba, Ca, K, Na or Li-ions. Powdered natural samples were used as starting material. All samples were analysed chemically before and after the cation exchange. The results of the analyses demonstrated clearly that the „exchange capacity“ depends on the method used, the structure of the zeolite and the nature of the cation involved in the exchange. The analyses also disclosed the important fact that the ratio in Mole % of the sum of exchangeable cations: Al2O3 of the natural and of the exchanged samples is generally <1, and can be as low as 0.74. Examples are presented where cation exchange results in a substantial change in the framework structure. Part II: Dehydration behavior and structural changes at elevated temperatures Samples of the natural zeolites mentioned above, and of some of their cation exchange products were dehydrated in air of controlled humidity up to 600° C. The slopes of the weight loss curves of chabazite and gmelinite are continuous, whereas those of phillipsite, gismondite, and harmotome show a discontinuity between 90–190° C, indicating the existence of two discrete hydrated phases for each of these zeolites. High temperature x-ray studies of powdered samples confirmed this result. The high temperature hydrates of phillipsite, gismondite, and harmotome persist reversibly up to approximately 230° C. At higher temperatures, new probably anhydrous phases form. Gmelinite, at 240° C, transforms irreversibly to anhydrous gmelinite which is stable up to >700° C. The transition was studied by single crystal techniques. The chabazite structure remains intact up to >700° C. The absolute water content and the dehydration behavoir of the zeolites investigated are primarily dependent on the nature of the exchange cation. The structural changes at elevated temperatures are determined by the silica alumina framework. Part III: Hydrothermal stability* and interconversions The stability of phillipsite, gismondite, harmotome, chabazite, gmelinite, their exchange products, and of the synthetic Linde zeolites Faujasite and Type A was studied in the temperature range between 150° and 350° C at a constant pressure of 1000 atm of H2O. Between 180° and 260° C all examined Sodium and Calcium zeolites were metastable with respect to analcite (wairakite**). Phillipsite and sodium-rich zeolites generally converted to analcite (wairakite) directly. Caex-chabazite and Caex-gmelinite formed phillipsite, whereas Ca-gismondite and Ca-Type A formed natrolite as intermediate phases. Li-gmelinite converted to bikitaite***. (This represents the first successful preparation of natrolite and bikitaite. Attempts starting from gels or glasses have been unsuccessful so far.) Ba-gmelinite converted to harmotome at 250° C. This transformation was studied microscopically and by single crystal x-ray techniques. The transformations that take place on hydrothermal treatment as well as on low temperature cation exchange of zeolites (see Part I) indicate that, unlike the conditions prevailing in clays, the type of cation and the ratio of cations in the exchange positions have an important influence on the structure of the silicaalumina-oxygen framework. This explains two phenomena: The lack of solid solution between two potential end members of a solid solution series (for instance phillipsite-gismondite), and the large number of different zeolites in nature, where a great variety in the ratios of available alkali and alkaline earths ions must be expected. Any classification of zeolites becomes still more difficult in view of the fact that conversions among different groups (chabazite → phillipsite) and different structures (three-dimensional framework → fibre) take place relatively easily. Contribution No. 59–92, College of Mineral Industries, The Pennsylvania State University, University Park, Pennsylvania.  相似文献   

16.
17.
Petrology of eclogites from north of Shahrekord, Sanandaj-Sirjan Zone, Iran   总被引:1,自引:0,他引:1  
Summary Metabasic rocks were recently found within a ductile shear zone in the north of Shahrekord, being a part of the structural zone of Sanandaj-Sirjan, SW Iran. The rocks give evidence of a so far unrecognized eclogite facies metamorphic event and testify to high pressure metamorphism in the Sanandaj-Sirjan Zone, near the Main Zagros Reverse Fault, which is the assumed suture zone between the Arabian plate and the Iranian block. The eclogites occur as lenses or blocks within ortho- and paragneisses. The petrographic features and reaction textures display at least two main metamorphic stages: (1) a peak eclogite facies stage, and (2) a subsequent amphibolite facies stage. The eclogite facies metamorphism is indicated by omphacite + garnet + sodic-calcic amphiboles (barroisite, magnesiokatophorite and magnesiotaramite) + phengite + rutile + (clino-)zoisite + quartz ± dolomite. The garnets are mainly almandine-rich, which fits with the C-type eclogite classification. Calcic amphiboles (hornblende, tschermakite and pargasite) + plagioclase are secondary phases formed during the retrograde amphibolite-facies metamorphism. P-T estimates for the eclogite facies give pressures of 21–24 kbar and temperatures of 590–630 °C (geothermometry) and 470–520 °C (THERMOCALC), respectively. Geothermobarometry for the amphibolite-facies metamorphism yields 10–11 kbar and 650–700 °C. Author’s address: Ali Reza Davoudian, Department of Natural Resources, Shahrekord University, Shahrekord, Iran  相似文献   

18.
The high albite (Ab)⇄jadeite (Jd)+quartz(Q) reaction (1) and the quartz(Q)⇄coesite (Cs) transformation (2) have been determined within the temperature range of 1000–1100°C and 1000–1400°C respectively under variable pressures using an anvil-with-hole apparatus. The equilibrium curves for the two reactions as a function ofP andT are as follows: P=−1·33+0·0296T (reaction 1);P=18·949+0·0111T(reaction 2). These two lines intersect at 31·1±0·5kb and 1096°C. The possibility of using an anvil-with-hole apparatus for conducting current investigations is discussed in this paper.  相似文献   

19.
The Wittichen Co–Ag–Bi–U mining area (Schwarzwald ore district, SW Germany) hosts several unconformity-related vein-type mineralizations within Variscan leucogranite and Permian to Triassic redbeds. The multistage mineralization formed at the intersection of two fault systems in the last 250 Ma. A Permo-Triassic ore stage I with minor U–Bi–quartz–fluorite mineralization is followed by a Jurassic to Cretaceous ore stage II with the main Ag and Co mineralization consisting of several generations of gangue minerals that host the sub-stages of U–Bi, Bi–Ag, Ni–As–Bi and Co–As–Bi. Important ore minerals are native elements, Co and Ni arsenides, and pitchblende; sulphides are absent. The Miocene ore stage III comprises barite with the Cu–Bi sulfosalts emplectite, wittichenite and aikinite, and the sulphides anilite and djurleite besides native Bi, chalcopyrite, sphalerite, galena and tennantite. The mineral-forming fluid system changed from low salinity (<5 wt.% NaCl) at high temperature (around 300°C) in Permian to highly saline (around 25 wt.% NaCl + CaCl2) at lower temperatures (50–150°C) in Triassic to Cretaceous times. Thermodynamic calculations and comparison with similar mineralizations worldwide show that the Mesozoic ore-forming fluid was alkaline with redox conditions above the hematite–magnetite buffer. We suggest that the precipitation mechanism for native elements, pitchblende and arsenides is a decrease in pH during fluid mixing processes. REE patterns in fluorite and the occurrence of Bi in all stages suggest a granitic source of some ore-forming elements, whereas, e.g. Ag, Co and Ni probably have been leached from the redbeds. The greater importance of Cu and isotope data indicates that the Miocene ore stage III is more influenced by fluids from the overlying redbeds and limestones than the earlier mineralization stages.  相似文献   

20.
Calcite veins and related sulphate–sulphide mineralisation are common in the Buda Hills. Also, abundant hypogenic caves are found along fractures filled with these minerals pointing to the fact that young cave-forming fluids migrated along the same fractures as the older mineralising fluids did. The studied vein-filling paragenesis consists of calcite, barite, fluorite and sulphides. The strike of fractures is consistent—NNW–SSE—concluding a latest Early Miocene maximum age for the formation of fracture-filling minerals. Calcite crystals contain coeval primary, hydrocarbon-bearing- and aqueous inclusions indicating that also hydrocarbons have migrated together with the mineralising fluids. Hydrocarbon inclusions are described here for the first time from the Buda Hills. Mixed inclusions, i.e., petroleum with ‘water-tail’, were also detected, indicating that transcrystalline water migration took place. The coexistence of aqueous and petroleum inclusions permitted to establish the entrapment temperature (80°C) and pressure (85 bar) of the fluid and thus also the thickness of sediments, having been eroded since latest Early Miocene times, was calculated (800 m). Low salinity of the fluids (<1.7 NaCl eq. wt%) implies that hydrocarbon-bearing fluids were diluted by regional karst water. FT-IR investigations revealed that CO2 and CH4 are associated with hydrocarbons. Groundwater also contains small amounts of HC and related gases on the basin side even today. Based on the location of the paleo- and recent hydrocarbon indications, identical migration pathways were reconstructed for both systems. Hydrocarbon-bearing fluids are supposed to have migrated north-westward from the basin east to the Buda Hills from the Miocene on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号