首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
53 local earthquakes recorded at 2.5 km depth in the Cajon Pass scientific borehole are analysed for shear-wave splitting. The time delays between the split shear waves can be positively identified for 32 of the events. Modelling these observations of polarizations and time delays using genetic algorithms suggests that the anisotropic structure near Cajon Pass has orthorhombic symmetry. The polarization of the shear waves and the inferred strike of the stress-aligned fluid-filled intergranular microcracks and pores suggests that the maximum horizontal compressional stress direction is approximately N13°W. This is consistent with previous results from earthquake source mechanisms and the right-lateral strike-slip motion on the nearby San Andreas Fault, but not with stresses measured within the uppermost 3 km of the borehole. This study suggests that the San Andreas Fault is driven by deeper tectonic stresses and the present understanding of a weak and frictionless San Andreas Fault may need to be modified. The active secondary faulting and folding close to the fault are probably driven by the relatively shallow stress as measured in the 3.5 km deep borehole.  相似文献   

5.
Shear-wave splitting in the mantle of the pacific   总被引:4,自引:0,他引:4  
  相似文献   

6.
Shear-wave splitting is analysed on data recorded by the High Resolution Seismic Network (HRSN) at Parkfield on the San Andreas fault, Central California, during the three-year period 1988-1990. Shear-wave polarizations either side of the fault are generally aligned in directions consistent with the regional horizontal maximum compressive stress, at some 70° to the fault strike, whereas at station MM in the immediate fault zone, shear-wave polarizations are aligned approximately parallel to the fault. Normalized time delays at this station are found to be about twice as large as those in the rock mass either side. This suggests that fluid-filled cracks and fractures within the fault zone are elastically or seismically different from those in the surrounding rocks, and that the alignment of fault-parallel shear-wave polarizations are associated with some fault-specific phenomenon.
Temporal variations in time delays between the two split shear-waves before and after a ML = 4 earthquake can be identified at two stations with sufficient data: MM within the fault zone and VC outside the immediate fault zone. Time delays between faster and slower split shear waves increase before the ML = 4 earthquake and decrease near the time of the event. The temporal variations are statistically significant at 68 per cent confidence levels. Earthquake doublets and multiplets also show similar temporal variations, consistent with those predicted by anisotropic poroelasticity theory for stress modifications to the microcrack geometry pervading the rock mass. This study is broadly consistent with the behaviour observed before three other earthquakes, suggesting that the build-up of stress before earthquakes may be monitored and interpreted by the analysis of shear-wave splitting.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
An important question in seismic hazard assessments is the frequency-size and recurrence interval statistics at a point on a fault. Does a point on a fault obey the same statistics as earthquakes in a region do? This is a difficult question to answer because the number of repetitive earthquakes on a particular fault that have been observed is small. In order to overcome this difficulty we consider slip events on the creeping section of the San Andreas fault in central California. Sequences of up to 100 events are obtained from creepmeter records. We compare the statistical distribution of recurrence times with the Brownian passage-time, lognormal, and Weibull distributions and using goodness-of-fit tests find that the Weibull is the preferred distribution. We also consider the frequency–amplitude distribution of slip events. We find that the data clearly do not obey a Gutenberg–Richter distribution. Instead there is a uniform distribution of event sizes for a large fraction of events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号