首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the continuous wavelet transform based on complex Morlet wavelets, which has been developed to estimate the source distribution of potential fields. For magnetic anomalies of adjacent sources, they always superimpose upon each other in space and wavenumber, making the identification of magnetic sources problematic. Therefore, a scale normalization factor, a?n, is introduced on the wavelet coefficients to improve resolution in the scalogram. By theoretical modelling, we set up an approximate linear relationship between the pseudo‐wavenumber and source depth. The influences of background field, random noise and magnetization inclination on the continuous wavelet transform of magnetic anomalies are also discussed and compared with the short‐time Fourier transform results. Synthetic examples indicate that the regional trend has little effect on our method, while the influence of random noise is mainly imposed on shallower sources with higher wavenumbers. The source horizontal position will be affected by the change of magnetization direction, whereas the source depth remains unchanged. After discussing the performance of our method by showing the results of various synthetic tests, we use this method on the aeromagnetic data of the Huanghua depression in central China to define the distribution of volcanic rocks. The spectrum slices in different scales are used to determine horizontal positions of volcanic rocks and their source depths are estimated from the modulus maxima of complex coefficients, which is in good accordance with drilling results.  相似文献   

2.
We present two new potential-inversion methods for estimating the depth and the nature (structural index) of the source, which use various combinations of different forms of local wavenumbers and the information about the horizontal location to estimate individually the depth and the nature of a magnetic source. The improved local wavenumber methods only use the horizontal offset and vertical offset of local wavenumbers to estimate the depth and the structural index of the source, so they yield more stable results compared with the results obtained by current methods that require the derivatives of local wavenumbers. Tests conducted with synthetic noise-free and noise-corrupted magnetic data show that the proposed methods can successfully estimate the depth and the nature of the geologic body. However, our methods are sensitive to high-wavenumber noise present in the data, and we reduced the noise effect by upward continuing the noise-corrupted magnetic data. The practical application of the new methods is tested on a real magnetic anomaly over a dike whose source parameters are known and the inversion results are consistent with the true values.  相似文献   

3.
The way potential fields convey source information depends on the scale at which the field is analysed. In this sense a multiscale analysis is a useful method to study potential fields particularly when the main field contributions are caused by sources with different depths and extents. Our multiscale approach is built with a stable transformation, such as depth from extreme points. Its stability results from mixing, in a single operator, the wavenumber low‐pass behaviour of the upward continuation transformation of the field with the enhancement high‐pass properties of n‐order derivative transformations. So, the complex reciprocal interference of several field components may be efficiently faced at several scales of the analysis and the depth to the sources may be estimated together with the homogeneity degrees of the field. In order to estimate the source boundaries we use another multiscale method, the multiscale derivative analysis, which utilizes a generalized concept of horizontal derivative and produces a set of boundary maps at different scales. We show through synthetic examples and application to the gravity field of Southern Italy that this multiscale behaviour makes this technique quite different from other source boundary estimators. The main result obtained by integrating multiscale derivative analysis with depth from extreme points is the retrieval of rather effective information of the field sources (horizontal boundaries, depth, structural index). This interpretative approach has been used along a specific transect for the analysis of the Bouguer anomaly field of Southern Apennines. It was set at such scales, so to emphasize either regional or local features along the transect. Two different classes of sources were individuated. The first one includes a broad, deep source with lateral size of 45∼50 km, at a depth of 13 km and having a 0.5 structural index. The second class includes several narrower sources located at shallowest depths, ranging from 3–6 km, with lateral size not larger than 5 km and structural indexes ranging from 1–1.5. Within a large‐scale geological framework, these results could help to outline the mean structural features at crustal depths.  相似文献   

4.
The calculable magnitudes of the anomalous magnetic field from simple 2D sources and their gradients and Laplacians appear as ratios that can be synthesized in functional forms, corresponding to the different source shapes. Field components and first‐order derivatives are involved in the inversion procedures presented. The structural index and source depth are estimated independently of each other. The applied functions allow magnetic profiles and magnetic maps to be shape‐ and depth‐converted with immediate imaging of the inversion results. The contours of these functions outline elongated loops around the 2.5D anomaly axis on magnetic maps. The width of the loops reflects the depth and structural index N of the source in the scale units of the inverted map. Model and field tests illustrate the effectiveness of this approach for fast automatic inversion of large sets of magnetic data for depth, shape, length and location of simple sources.  相似文献   

5.
Scattered ground roll is a type of noise observed in land seismic data that can be particularly difficult to suppress. Typically, this type of noise cannot be removed using conventional velocity‐based filters. In this paper, we discuss a model‐driven form of seismic interferometry that allows suppression of scattered ground‐roll noise in land seismic data. The conventional cross‐correlate and stack interferometry approach results in scattered noise estimates between two receiver locations (i.e. as if one of the receivers had been replaced by a source). For noise suppression, this requires that each source we wish to attenuate the noise from is co‐located with a receiver. The model‐driven form differs, as the use of a simple model in place of one of the inputs for interferometry allows the scattered noise estimate to be made between a source and a receiver. This allows the method to be more flexible, as co‐location of sources and receivers is not required, and the method can be applied to data sets with a variety of different acquisition geometries. A simple plane‐wave model is used, allowing the method to remain relatively data driven, with weighting factors for the plane waves determined using a least‐squares solution. Using a number of both synthetic and real two‐dimensional (2D) and three‐dimensional (3D) land seismic data sets, we show that this model‐driven approach provides effective results, allowing suppression of scattered ground‐roll noise without having an adverse effect on the underlying signal.  相似文献   

6.
The conventional spectral analysis method for interpretation of magnetic data assumes stationary spatial series and a white‐noise source distribution. However, long magnetic profiles may not be stationary in nature and source distributions are not white. Long non‐stationary magnetic profiles can be divided into stationary subprofiles following Wiener filter theory. A least‐squares inverse method is used to calculate the scaling exponents and depth values of magnetic interfaces from the power spectrum. The applicability of this approach is demonstrated on non‐stationary synthetic and field magnetic data collected along the Nagaur–Jhalawar transect, western India. The stationarity of the whole profile and the subprofiles of the synthetic and field data is tested. The variation of the mean and standard deviations of the subprofiles is significantly reduced compared with the whole profile. The depth values found from the synthetic model are in close agreement with the assumed depth values, whereas for the field data these are in close agreement with estimates from seismic, magnetotelluric and gravity data.  相似文献   

7.
A new methodology that levels airborne magnetic data without orthogonal tie‐lines is presented in this study. The technique utilizes the low‐wavenumber content of the flight‐line data to construct a smooth representation of the regional field at a scale appropriate to the line lengths of the survey. Levelling errors are then calculated between the raw flight‐line data and the derived regional field through a least squares approach. Minimizing the magnitude of the error, with a first‐degree error function, results in significant improvements to the unlevelled data. The technique is tested and demonstrated using three recent airborne surveys.  相似文献   

8.
This paper presents a new inversion method for the interpretation of 2D magnetic anomaly data, which uses the combination of the analytic signal and its total gradient to estimate the depth and the nature (structural index) of an isolated magnetic source. However, our proposed method is sensitive to noise. In order to lower the effect of noise, we apply upward continuation technique to smooth the anomaly. Tests on synthetic noise-free and noise corrupted magnetic data show that the new method can successfully estimate the depth and the nature of the causative source. The practical application of the technique is applied to measured magnetic anomaly data from Jurh area, northeast China, and the inversion results are in agreement with the inversion results from Euler deconvolution of the analytic signal.  相似文献   

9.
In this paper, we describe a non‐linear constrained inversion technique for 2D interpretation of high resolution magnetic field data along flight lines using a simple dike model. We first estimate the strike direction of a quasi 2D structure based on the eigenvector corresponding to the minimum eigenvalue of the pseudogravity gradient tensor derived from gridded, low‐pass filtered magnetic field anomalies, assuming that the magnetization direction is known. Then the measured magnetic field can be transformed into the strike coordinate system and all magnetic dike parameters – horizontal position, depth to the top, dip angle, width and susceptibility contrast – can be estimated by non‐linear least squares inversion of the high resolution magnetic field data along the flight lines. We use the Levenberg‐Marquardt algorithm together with the trust‐region‐reflective method enabling users to define inequality constraints on model parameters such that the estimated parameters are always in a trust region. Assuming that the maximum of the calculated gzz (vertical gradient of the pseudogravity field) is approximately located above the causative body, data points enclosed by a window, along the profile, centred at the maximum of gzz are used in the inversion scheme for estimating the dike parameters. The size of the window is increased until it exceeds a predefined limit. Then the solution corresponding to the minimum data fit error is chosen as the most reliable one. Using synthetic data we study the effect of random noise and interfering sources on the estimated models and we apply our method to a new aeromagnetic data set from the Särna area, west central Sweden including constraints from laboratory measurements on rock samples from the area.  相似文献   

10.
In the field of seismic interferometry, researchers have retrieved surface waves and body waves by cross‐correlating recordings of uncorrelated noise sources to extract useful subsurface information. The retrieved wavefields in most applications are between receivers. When the positions of the noise sources are known, inter‐source interferometry can be applied to retrieve the wavefields between sources, thus turning sources into virtual receivers. Previous applications of this form of interferometry assume impulsive point sources or transient sources with similar signatures. We investigate the requirements of applying inter‐source seismic interferometry using non‐transient noise sources with known positions to retrieve reflection responses at those positions and show the results using synthetic drilling noise as source. We show that, if pilot signals (estimates of the drill‐bit signals) are not available, it is required that the drill‐bit signals are the same and that the phases of the virtual reflections at drill‐bit positions can be retrieved by deconvolution interferometry or by cross‐coherence interferometry. Further, for this case, classic interferometry by cross‐correlation can be used if the source power spectrum can be estimated. If pilot signals are available, virtual reflection responses can be obtained by first using standard seismic‐while‐drilling processing techniques such as pilot cross‐correlation and pilot deconvolution to remove the drill‐bit signatures in the data and then applying cross‐correlation interferometry. Therefore, provided that pilot signals are reliable, drill‐bit data can be redatumed from surface to borehole depths using this inter‐source interferometry approach without any velocity information of the medium, and we show that a well‐positioned image below the borehole can be obtained using interferometrically redatumed reflection responses with just a simple velocity model. We discuss some of the practical hurdles that restrict the application of the proposed method offshore.  相似文献   

11.
The relation in which the vertical and horizontal gradients of potential field data measured along a profile across a two‐dimensional source are a Hilbert transform pair is re‐established using complex domain mathematics. In addition, a relation between the measured field and its vertical gradient in terms of a closed‐form formula is also established. The formula is based on hypersingular or Hadamard's finite‐part integral. To estimate the vertical gradient directly from the field data, Linz's algorithm of computing Hadamard's finite‐part integral is implemented. Numerical experiments are conducted on synthetically generated total magnetic intensity data with a mild level of noise contamination. A model of a magnetically polarised vertical thin sheet buried at a finite depth within a non‐magnetic half‐space was considered in generating the synthetic response. The results from numerical experiments on the mildly noise‐contaminated synthetic response are compared with those from using classical Fourier and robust regularised Hilbert transform‐based techniques.  相似文献   

12.
Multiridge Euler deconvolution   总被引:1,自引:0,他引:1  
Potential field interpretation can be carried out using multiscale methods. This class of methods analyses a multiscale data set, which is built by upward continuation of the original data to a number of altitudes conveniently chosen. Euler deconvolution can be cast into this multiscale environment by analysing data along ridges of potential fields, e.g., at those points along lines across scales where the field or its horizontal or vertical derivative respectively is zero. Previous work has shown that Euler equations are notably simplified along any of these ridges. Since a given anomaly may generate one or more ridges we describe in this paper how Euler deconvolution may be used to jointly invert data along all of them, so performing a multiridge Euler deconvolution. The method enjoys the stable and high‐resolution properties of multiscale methods, due to the composite upward continuation/vertical differentiation filter used. Such a physically‐based field transformation can have a positive effect on reducing both high‐wavenumber noise and interference or regional field effects. Multiridge Euler deconvolution can also be applied to the modulus of an analytic signal, gravity/magnetic gradient tensor components or Hilbert transform components. The advantages of using multiridge Euler deconvolution compared to single ridge Euler deconvolution include improved solution clustering, increased number of solutions, improvement of accuracy of the results obtainable from some types of ridges and greater ease in the selection of ridges to invert. The multiscale approach is particularly well suited to deal with non‐ideal sources. In these cases, our strategy is to find the optimal combination of upward continuation altitude range and data differentiation order, such that the field could be sensed as approximately homogeneous and then characterized by a structural index close to an integer value. This allows us to estimate depths related to the top or the centre of the structure.  相似文献   

13.
This paper develops an automatic method for interpretation of magnetic data using derivatives of the analytic signal. A linear equation is derived to provide source location parameters of a 2D magnetic body without a priori information about the nature of the source. Then using the source location parameters, the nature of the source can be ascertained. The method has been tested using theoretical simulations with random noise for two 2D magnetic models placed at different depths with respect to the observation height. In both cases, the method gave a good estimate for the location and shape of the sources. Good results were obtained on two field data sets.  相似文献   

14.
In this paper, we present a case study on the use of the normalized source strength (NSS) for interpretation of magnetic and gravity gradient tensors data. This application arises in exploration of nickel, copper and platinum group element (Ni‐Cu‐PGE) deposits in the McFaulds Lake area, Northern Ontario, Canada. In this study, we have used the normalized source strength function derived from recent high resolution aeromagnetic and gravity gradiometry data for locating geological bodies. In our algorithm, we use maxima of the normalized source strength for estimating the horizontal location of the causative body. Then we estimate depth to the source and structural index at that point using the ratio between the normalized source strength and its vertical derivative calculated at two levels; the measurement level and a height h above the measurement level. To discriminate more reliable solutions from spurious ones, we reject solutions with unreasonable estimated structural indices. This method uses an upward continuation filter which reduces the effect of high frequency noise. In the magnetic case, the advantage is that, in general, the normalized magnetic source strength is relatively insensitive to magnetization direction, thus it provides more reliable information than standard techniques when geologic bodies carry remanent magnetization. For dipping gravity sources, the calculated normalized source strength yields a reliable estimate of the source location by peaking right above the top surface. Application of the method on aeromagnetic and gravity gradient tensor data sets from McFaulds Lake area indicates that most of the gravity and magnetic sources are located just beneath a 20 m thick (on average) overburden and delineated magnetic and gravity sources which can be probably approximated by geological contacts and thin dikes, come up to the overburden.  相似文献   

15.
The current local wavenumber methods for the interpretation of magnetic anomalies compute the locations of geological bodies by solving complex matrices. Presently, such methods require to know the structural index, which is a parameter that represents the source type. The structural index is hard to know in real data; consequently, the precision of current methods is low. We present the fast local wavenumber (FLW) method, and define the squared sum of the horizontal and vertical local wavenumbers as the cumulative local wavenumber. The FLW method is the linear combination of the umulative local wavenumberand other wavenumbers, and is used to compute the locations and structural index of the source without a priori information and matrix solution. We apply the FLW method to synthetic magnetic anomalies, and the results suggest that the FLW method is insensitive to background and oblique magnetization. Next, we apply the FLW method to real magnetic data to obtain the location and structural index of the source.  相似文献   

16.
全张量探测技术以其信息量大、精度高、干扰小等优点在地球物理领域中得到广泛应用.本文提出采用张量局部波数法来进行位场全张量数据的解释,首先给出了张量局部波数的定义,然后推导出利用张量局部波数法进行反演的基本公式.本文方法在进行张量数据反演时无需事先知道场源体的类型(构造指数)即可获得场源体的位置信息,且可根据位置参数对场源体的类型进行估计.通过理论模型证明张量局部波数法可以很好地完成位场全张量数据的反演工作,并将其与常规局部波数法进行对比,证明全张量局部波数法的反演结果更加准确,即使在测点分布不合理的情况下,张量局部波数法仍可以获得准确的结果.最后应用张量局部波数法对美国得克萨斯州实测重力数据进行了反演,其反演结果与已有的研究成果相一致.  相似文献   

17.
This paper presents the theory to eliminate from the recorded multi‐component source, multi‐component receiver marine electromagnetic measurements the effect of the physical source radiation pattern and the scattering response of the water‐layer. The multi‐component sources are assumed to be orthogonally aligned above the receivers at the seabottom. Other than the position of the sources, no source characteristics are required. The integral equation method, which for short is denoted by Lorentz water‐layer elimination, follows from Lorentz' reciprocity theorem. It requires information only of the electromagnetic parameters at the receiver level to decompose the electromagnetic measurements into upgoing and downgoing constituents. Lorentz water‐layer elimination replaces the water layer with a homogeneous half‐space with properties equal to those of the sea‐bed. The source is redatumed to the receiver depth. When the subsurface is arbitrary anisotropic but horizontally layered, the Lorentz water‐layer elimination scheme greatly simplifies and can be implemented as deterministic multi‐component source, multi‐component receiver multidimensional deconvolution of common source gathers. The Lorentz deconvolved data can be further decomposed into scattering responses that would be recorded from idealized transverse electric and transverse magnetic mode sources and receivers. This combined electromagnetic field decomposition on the source and receiver side gives data equivalent to data from a hypothetical survey with the water‐layer absent, with idealized single component transverse electric and transverse magnetic mode sources and idealized single component transverse electric and transverse magnetic mode receivers. When the subsurface is isotropic or transverse isotropic and horizontally layered, the Lorentz deconvolution decouples into pure transverse electric and transverse magnetic mode data processing problems, where a scalar field formulation of the multidimensional Lorentz deconvolution is sufficient. In this case single‐component source data are sufficient to eliminate the water‐layer effect. We demonstrate the Lorentz deconvolution by using numerically modeled data over a simple isotropic layered model illustrating controlled‐source electromagnetic hydrocarbon exploration. In shallow water there is a decrease in controlled‐source electromagnetic sensitivity to thin resistors at depth. The Lorentz deconvolution scheme is designed to overcome this effect by eliminating the water‐layer scattering, including the field's interaction with air.  相似文献   

18.
欧拉反褶积与解析信号相结合的位场反演方法   总被引:2,自引:2,他引:2       下载免费PDF全文
由于解析信号具有不受(二维)或少受磁化方向影响,能够较好反映磁性体边界的特性,因此受到人们的重视.欧拉反褶积法可以确定场源的位置和深度以及形状因子,具有较强的适应性.因此前人提出将二者相结合的方法.针对前人提出的方法中存在受高频干扰严重的问题,本文提出低阶的欧拉反褶积与解析信号相结合的位场反演方法.本方法在反演中只需计...  相似文献   

19.
Processing And Interpretation Of Electromagnetic Induction Array Data   总被引:1,自引:0,他引:1  
The simultaneous nature of array data can be exploitedin electromagnetic induction studiesfor three general purposes.First, one or more reference sites can be usedto reduce bias, improve signal-to-noise ratios, and provide bettercontrol over source complications and coherent noisein estimates of MT impedances and otherEM transfer functions (TFs).Although a single good reference site can dramatically improveTF estimates, improvements due to multiple sites are often rather modest, because local noise is the limiting factor.Secondly, arrays allow for estimation of inter-station transfer functions, and maps of anomalous horizontal field variations. Relatively straightforward modifications to inversion codes wouldallow quantitative interpretation of these additionalconstraints on resistivity variations.Finally, with arrays it is possible to estimate the response of theEarth to a richer spectrum of external source excitations. In particular,the natural extension to the usual uniform source assumption implicit inthe MT method allows for three curl-free magnetic gradient sources.Quantitative interpretation of the response of a three-dimensionalEarth to these sources could provide additionalconstraints on large scale variations in crustal and uppermantle resistivity, and might help to overcome problemsdue to aliasing of near surface distortion in widely spaced MT data.  相似文献   

20.
重磁异常解释的归一化局部波数法   总被引:3,自引:2,他引:1       下载免费PDF全文
局部波数法是进行重磁数据解释的常用方法之一.本文提出归一化局部波数法,该方法在不需要任何关于地质体信息的前提下能有效地完成异常的反演工作,且给出了不同归一化方式的应用效果.理论模型试验表明归一化局部波数法能准确地完成异常的反演,且通过对比发现其他归一化方式(中值、几何平均和调和平均)的计算结果相对算术平均归一化结果具有更高的分辨率.将该方法应用于实测磁异常的解释,获得了未知地质体的空间位置.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号