共查询到20条相似文献,搜索用时 10 毫秒
1.
Werner Wassenberg 《Solar physics》1971,20(1):130-135
The polarization distribution of 17 GHz bursts is studied observed within a period of 1 yr after maximum solar activity. The typical variation of polarization with time of impulsive bursts leads to the conclusion of a thermalization of the emission region in the post-burst phase. The fine structure of the polarization curve of complex bursts is shown and two possible interpretations of the observed inversion of the polarization at 17 GHz during a complex event are given. 相似文献
2.
A. A. Kuznetsov 《Astronomy Letters》2007,33(5):319-326
Solar microwave bursts with a zebra pattern commonly exhibit a superfine time structure: the zebra stripes consist of separate spike-like pulses. We investigate the superfine structure in the April 21, 2002 event. The emission pulses are shown to exhibit a high periodicity (with a period of about 30 ms); there is a clear correlation between the individual zebra stripes. This structure of the dynamic spectra most likely reflects a periodic injection of electron beams, which generate emission at the double plasma resonance levels. 相似文献
3.
A search for linear polarization showing the effect of Faraday rotation has been made at 80 MHz in type III solar radio bursts. A novel autocorrelation technique was employed. The results were entirely negative, contrary to what was expected on the ground of earlier, less sophisticated experiments. However, there are convincing theoretical reasons why no linear polarization should be expected.Radiophysics Publication RPP 1642, September, 1972. 相似文献
4.
An explicit equation of the propagational angle of microwave emission between the line-of-sight and the local magnetic field is newly derived based on the approximated formulae of nonthermal gyrosynchrotron emission (Dulk and Marsh in Astrophys. J. 259, 350, 1982). The existence of the solution of propagational angle is clearly shown under a series of typical parameters in solar microwave observations. It could be used to determine the intrinsic mode and linear mode coupling in solar microwave bursts by three steps. (1) The mode coupling may happen only when the angle approximately equals to 90 degrees, i.e., when the emission propagates through the quasi-transverse region (Cohen in Astrophys. J. 131, 664, 1960). (2) The inversion of polarization sense due to the weakly mode coupling takes place only when the transition frequency defined by Cohen (1960) is larger than the frequency of microwave emission, and an observable criterion of the weakly mode coupling in flaring loops was indicated by the same polarization sense in the two footpoints of a flaring loop (Melrose and Robinson in Proc. Astron. Soc. Aust. 11, 16, 1994). (3) Finally, the intrinsic mode of microwave emission is determined by the observed polarization and the calculated direction of local magnetic field according to the general plasma dispersion relation, together with the mode coupling process. However, a 180-degree ambiguity still exists in the direction of longitudinal magnetic field, to produce an uncertainty of the intrinsic mode. One example is selected to check the feasibility of the method in the 2001 September 25 event with a loop-like structure nearby the central meridian passage observed by Nobeyama Radio Heliograph and Polarimeters. The calculated angle in one footpoint (FP) varied around 90° in two time intervals of the maximum phase, which gives a direct evidence of the emission propagating through a quasi-transverse region where the linear mode coupling took place, while, the angle in another FP was always smaller than 90° where the mode coupling did not happen. Moreover, the right-circular sense at 17 GHz was always observed in both two FPs during the event, which supports that the transition frequency should be larger than 17 GHz in the first FP together with strong magnetic field of over 2000 Gauses in photosphere, where the weakly coupled case should happen. Moreover, there are two possibilities of the intrinsic mode in the two FPs due to the 180-degree ambiguity. (1) The emission of extraordinary (X) mode from the first FP turns to the ordinary (O) mode in the two time intervals of the maximum phase, while, the X-mode is always emitted from the second FP. (2) The inversion from O-mode to X-mode takes place in the first FP, while the O-mode keeps in the second FP. If the magnetic polarities in photosphere and corona are coincident in this event, the intrinsic mode belongs to the second case. 相似文献
5.
Microwave observations with exceptionally high spectral resolution are described for a set of 49 solar flares observed between May and October 1981. Total power data were obtained at 40 frequencies between 1 and 18 GHz by the Owens Valley frequency-agile interferometer with 10 s time resolution. Statistical analysis of this sample of microwave bursts established the following significant characteristics of their microwave spectra: (i) Most ( 80%) of the microwave events displayed complex spectra consisting of more than one component during some or all of their lifetime. Single spectral component bursts are rare. It is shown that the presence of more than one component can lead to significant errors when data with low spectral resolution are used to determine the low-side spectral index. (ii) The high-resolution data show that many bursts have a low-side spectral index that is larger than the maximum value of about 3 that might be expected from theory. Possible explanations include the effect of the underlying active region on the perceived burst spectrum and/or the necessity for more accurate calculations for bursts with low effective temperatures, (iii) the peak frequencies of the bursts are remarkably constant during their lifetimes. This is contrary to expectations based on simple models in which the source size and ambient field remain constant during the evolution of a burst.Swiss National Science Foundation Fellow from the University of Bern. 相似文献
6.
J. C. Henoux 《Solar physics》1975,42(1):219-233
The effects of the Compton back-scattered X-ray flux from the photosphere on the directivity and polarization of flare X-rays between 15 keV and 150 keV are computed. The calculations are made with a thin target model for flares of De Jager-Kundu type with electrons spiralling downward around a vertical magnetic field and for an Isotropie source. The resulting polarization for an isotropic source is not higher than 4%. The resulting directivity of anisotropic sources is greatly reduced, particularly below 70 keV. The results of the statistical studies of the center-limb distribution of solar X-ray bursts are then compatible with the existing measures of polarization. The hypothesis for existence of De JagerKundu type flares is enforced. 相似文献
7.
High sensitivity, high time resolution recordings of microwave radio bursts show a number of periodic and quasi-periodic bursts which exhibit intervals of the order of 10–20 s. Some of the bursts are accompanied by simultaneous pulsations of the same interval detected in X-rays, type III-m, and extreme ultraviolet emissions. Mechanisms to explain solar radio pulsations are reviewed to see which can explain or be extended to explain these observations.Supported by a company-financed research program of The Aerospace Corporation. 相似文献
8.
Fine structure in solar microwave bursts 总被引:3,自引:0,他引:3
We have designed and constructed a new multi-channel radio spectrograph for the study of short-lived structures in solar microwave bursts. It measured the integrated flux over the whole solar disc in two circular polarizations at 36 frequencies between 4 and 8 GHz, with a time constant of 0.5 ms. We have analyzed all 119 recorded bursts observed in 1981 and 1983. We focused our attention on events with a lifetime of less than 1 s. Fine structure occurs in about 30% of the observed bursts, and can be as rich in detail as in bursts observed at lower frequencies. We found at least four different classes of events. In one event neither bandwidth nor time resolution of the receiver appear to be sufficient to resolve the fine structure. The bulk of the drifts is found to be towards higher frequencies. Periodic flux variations were found in two cases. 相似文献
9.
V. K. Verma 《Solar physics》1985,97(2):381-385
It is found that 20% solar surges are associated with microwave bursts (2800–15000 MHz) and also that solar surges are not associated with hard X-ray bursts (17–40 keV). 相似文献
10.
The circular polarization of complex solar bursts was measured at short microwaves (22 GHz, × 1.35 cm) with high sensitivity (0.03 s.f.u. r.m.s.) and high time resolution (5 ms). The polarization shows up as soon as an excess burst emission is measured. Two components are found in the time development of the degree of circular polarization: (1) a steady level, sometime changing smoothly with time; (2) superimposed faster polarization time structures, small compared to the basic steady degree of polarization, and often not clearly related to the burst flux time structures. The observed degrees may range from 10% to more than 85%.In memoriam (1942–1981). 相似文献
11.
12.
U. V. Gopala Rao 《Solar physics》1970,14(2):389-393
Homologous characteristics of radio bursts at 3000 MHz and associated optical flares are studied. It is found that flares associated with homologous radio bursts are also homologous optically.Published with the permission of the Director-General of Observatories, New Delhi. 相似文献
13.
Microwave observations in the range 1 to 18 GHz with high spectral resolution (40 frequencies) have shown that many events display a complex microwave spectrum. From a set of 14 events with two or more spectral components, we find that two different classes of complex events can be distinguished. The first group (4 events) is characterized by a different temporal evolution of the spectral components, resulting in a change of the spectral shape. These events probably can be explained by gyrosynchrotron emission from two or more individual sources. The second class (10 events) has a constant spectral shape, so that the two spectral components vary together in intensity. For all ten events in this second class, the ratio of primary to secondary peak frequencies is remarkably similar, exhibiting an average value of 3.4, and both components show a common circular polarization. These properties suggest either a common source for the different spectral components or several sources which are closely coupled. An additional example of this class of burst was observed interferometrically to provide spatial resolution. This event suggests that the primary and secondary components have a similar location, but that the surface area of the secondary component is larger.Swiss National Science Foundation Fellow from the University of Bern. 相似文献
14.
We review the results of simultaneous two-frequency imaging observations of solar microwave bursts with the Very Large Array. Simultaneous 2 and 6 cm observations have been made of bursts which are optically thin at both frequencies, or optically thick at the lower frequency. In the latter case the source structure may differ at the two frequencies, but the two sources usually seem to be related. However, this is not always true of simultaneous 6 and 20 cm observations. The results have implications for the analysis of non-imaging radio data of solar and stellar flares. 相似文献
15.
Pierre Kaufmann 《Solar physics》1978,60(2):367-381
The ultimate definition of fast time structures superimposed on an impulsive solar microwave burst is limited by instrumental time resolution and sensitivity. We analysed 7 GHz bursts with a time constant of 100 ms. The fast time structures seem to be common to all events, although the resolution so far attained might still be smoothing out structures with finer scale. The polarization degree does not show corresponding fast changes. When the degree of circular polarization is referred to the burst's excess flux, it may show a slowly varying time development. When it is referred to the total active center contribution, the polarization degree might become nearly unchanged during the burst development. The polarization degree is set by the large scale magnetic field strength and morphology over the active center and the burst source. The present results suggest that the microwave fast component burst source might remain nearly stationary in relation to the polarizing medium, occupying the same position as the active center hot spot previous to the event. The absence of fast time structures in polarization degree indicate negligible fast changes in the large scale magnetic field which pervades the burst source. Slow changes in polarization degree are sometimes associated with the slow component of impulsive events, and might be representative of secondary accelerations interpreted in terms of trap models. We discuss qualitatively some energy conversion mechanisms based on turbulent processes which may account for the fast burst components.Formerly Centro de Rádio-Astronomia e Astrofisica Mackenzie, now absorbed by CNPq and being re-organized in connection to Observatio Nacional. 相似文献
16.
P. A. Robinson 《Solar physics》1991,134(2):299-314
A new model is developed for electron-cyclotron maser emission from flaring loops, which incorporates competition between driving of the instability and maser-induced relaxation, together with interactions between small neighboring regions of unstable plasma. This results in a picture in which radiation is emitted in bursts from regions whose length scale is determined self-consistently by previous bursts, while the unstable plasma fluctuates about the point, close to marginal stability, at which driving of the instability is balanced by relaxation due to maser-induced electron diffusion. Under the conditions applicable to flaring loops, time scales of fundamental x-mode (x1) driving and saturation are approximately equal at 1 ms, resolving a (104–106)-fold discrepancy in previous models and agreeing with the observed time scales of microwave spike bursts. Saturation effects are found to be especially effective in suppressing amplification of the most strongly growing modes. This suppression enables fundamental o-mode (o1) and second-harmonic x-mode (x2) emission to compete more effectively against x1 emission for the available free energy than has previously been estimated. Consideration of mode competition, burst time scales, suppression of growth due to overlap between amplification and absorption bands, and escape of radiation through absorption layers to the observer, implies that the observed radiation probably escapes from the corona principally in the o-mode, either emitted directly as o1 radiation or mode converted from x1 emission. 相似文献
17.
《Chinese Astronomy and Astrophysics》1985,9(3):241-245
I suggest that the pulsation in solar microwave bursts is a modulation of gyro-synchrotron radiation. Whistler waves at the foot of a coronal loop (radio source) interact with nonthermal electrons with loss-cone distribution at the top. As a consequence, electrons outside the loss-cone diffuse into the loss-cone, pass through the loop foot, sink in the atmosphere, and emit gyro-synchrotron radiation as additional pulses. Electrons remaining outside the loss-cone give the background radiation of the burst.Assuming the configuration of a magnetic dipole lying below the photosphere, I calculated the period of pulsation to be 1 s- 1 min. The ratio of the pulse peak to background intensity is calculated to be 0 – 100%; the calculated pulse width is about 0.3 – 50 s. These values are consistent with the observed values. A brief discussion of the probable interpretation of fast, millisecond structures is also given. 相似文献
18.
Geomagnetic crochets (sfe) observed at Kodaikanal over the period 1966–71 have been studied in relation to solar X-ray bursts observed by NRL satellite (SOLRAD-9) in the 0.5–3 Å, 1–8 Å and 8–20 Å bands and radio bursts observed in the frequency range 1000–17000 MHz. The amplitude of sfe is linearly correlated with the peak intensities of X-ray bursts in the 1–8 Å and 8–20 Å bands. The single frequency correlation of sfe with radio bursts is a flat maximum in the frequency range 2000–3750 MHz. Following the spectral classification of AFCRL for microwave bursts, it is noticed that sfe are mostly associated with the A type burst spectra and are very poorly correlated with bursts with the G, C and M type spectra. These features differ from those of other SID's reported earlier. 相似文献
19.
Tatsuo Takakura 《Solar physics》1969,6(1):133-150
It has been controversial whether the flare-associated hard X-ray bursts are thermal emission or non-thermal emission. Another controversial point is whether or not the associated microwave impulsive burst originates from the common electrons emitting the hard X-ray burst.It is shown in this paper that both the thermal and non-thermal bremsstrahlung should be taken into account in the quantitative explanation of the time characteristics of the hard X-ray bursts observed so far in the photon energy range of 10–150 keV. It is emphasized that the non-thermal electrons emitting the hard X-rays and those emitting the microwave impulsive burst are not common. The model is as follows, which is also consistent with the radio observations.At the explosive phase of the flare a hot coronal condensation is made, its temperature is generally 107 to 108K, the number density is about 1010 cm–3 and the total volume is of the order of 1029 cm3. A small fraction, 10–3–10–4, of the thermal electrons is accelerated to have power law distribution. Both the non-thermal and thermal electrons in the sporadic condensation contribute to the X-ray bursts above 10 keV as the bremsstrahlung. Fast decay of the harder X-rays (say, above 20 keV) for a few minutes is attributed to the decay of non-thermal electrons due to collisions with thermal electrons in the hot condensation. Slower decay of the softer X-rays including around 10 keV is attributed to the contribution of thermal component.The summary of this paper was presented at the Symposium on Solar Flares and Space Research, COSPAR, Tokyo, May, 1968. 相似文献
20.