首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study has been made of the relation of 19 GHz( = 1.58 cm) solar radio bursts to solar proton emission, with particular reference to the usefulness of relatively long duration bursts with intensities exceeding 50% of the quiet Sun flux (or exceeding 350 × 10–22 W m–2 Hz–1) as indicators of the occurrence of proton events during the four years from 1966–69. 76 to 88% of such bursts are directly associated with solar protons and 60 to 85% of the moderate to large proton events in the four year period could have been predicted from these bursts. The complete microwave spectra of the proton events have also been studied, and have been used to extend the results obtained at 19 GHz to other frequencies, particularly in the 5–20 GHz band. The widely used frequency of 2.8 GHz is not the optimum frequency for this purpose since proton events have a minimum of emission in this region. Most of the radio energy of proton events is at frequencies above 10 GHz. The radio spectra of proton events tend to peak at higher frequencies than most non-proton events, the overall range being 5 to 70 GHz, with a median of 10–12 GHz and a mean of 17 GHz.On leave from the Radio and Space Research Station, Slough, England, as 1969–1970 National Research Council-National Academy of Sciences Senior Post-Doctoral Research Associate at AFCRL.  相似文献   

2.
The theoretical explanation of the U-shape spectrum of Type IV solar radio bursts given in /1/ led us to expect certain correlations between this spectrum and that of the associated proton events. These correlations are established using Earth-based and space observations during the last solar cycle. They may be used for real-time prediction of proton events.  相似文献   

3.
During its flyby of Jupiter in February 1992, the Ulysses spacecraft passed through the Southern Hemisphere dusk-side Jovian magnetosphere, a region not previously explored by spacecraft. Among the new findings in this region were numerous, sometimes periodic, bursts of high energy electrons with energies extending from less than 1.5 MeV to beyond 16 MeV. These bursts were discovered by the High Energy Telescope (HET) and the Kiel Electron Telescope (KET) of the COSPIN Consortium. In this paper we provide a detailed analysis of observations related to the bursts using HET measurements. At the onset of bursts, the intensity of > 16 MeV electrons often rose by a factor of > 100 within 1 min, and multiple, pulsed injections were sometimes observed. The electron energy spectrum also hardened significantly at the onset of a burst. In most bursts anisotropy measurements indicated initial strong outward streaming of electrons along magnetic field lines that connect to the southern polar regions of Jupiter, suggesting that the acceleration and/or injection region for the electrons lies at low altitudes near the South Pole. The initial strong outward anisotropies relaxed to strong field-aligned bidirectional anisotropies later in the events. The bursts sometimes appeared as isolated events, but at other times appeared in quasi-periodic series with a period of 40 min. For smaller events shorter periods of the order 2–3 min were also observed in a few cases. For large events, multiple injections were sometimes observed in the first few minutes of the event. Radio bursts identified by the Ulysses URAP experiment in the frequency range 1–50 kHz were correlated with many of the electron bursts, and comparison of the time-intensity profiles for radio and electrons shows that the radio emission typically started several minutes before the electron intensity increase was observed. For the strongest electron bursts, small increases in the low energy (> 0.3 MeV) proton counting rates were also observed. Using a computerized identification algorithm to pick out bursts from the data record using a consistent set of criteria, 121 events were identified as electron bursts during the outbound pass, compared to only three events that satisfied the same criteria during the inbound pass through the day-side magnetosphere. No similar electron burst events have been found outside the magnetopause. Estimates of the electron content of a typical large burst (> 1027 electrons) suggest that these bursts may make significant contributions to the fluxes of electrons observed in Jupiter's outer magnetosphere, and in interplanetary space.  相似文献   

4.
The correlation between the proton flux intensity I p with the energies E p > 1?100 MeV and radio burst parameters for 107 solar energetic events is considered using the observation data for 1989?C2005 obtained with GOES and Wind satellites, as well as the Radio Solar Telescope Network (RSTN). It has been revealed that 73 and 77% of the events were accompanied by type-II radio bursts in the meter (m II, 25?C299 MHz) and the decameter-hectometer (DH II, 20 kHz?C14 MHz) wavelength ranges, respectively. The correlation coefficient between I p and the frequency drift velocity of the type-II bursts V II did not exceed 0.40. As V II increased, the intensity of I p increased for the m-II bursts and decreased for the DH-II bursts. Coronal shock waves accelerate protons more efficiently than interplanetary waves, and their contribution to acceleration increases with an increase in the particle energy E p . The acceleration of solar energetic particles in the region of the flare energy release is predominant.  相似文献   

5.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

6.
Four 15.8 mm solar bursts are discussed and the results are compared with data on recorded proton events, in relation to the prediction of such events from radio observations.Currently on leave of absence as 1969–70 NRC-OAR Senior Post-Doctoral Research Associate, AFCRL, Hanscom Field, Bedford, Mass. 01730.  相似文献   

7.
The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper, we establish unambiguous SA event criteria for the purpose of statistically comparing SA events with conventional kilometric type III bursts. We apply these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval and find that more than 70% of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event in our sample is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity. Compared with conventional kilometric type III bursts, the characteristics of these SA events are longer duration, higher maximum intensity, and a larger number of components. Differences in these characteristics for the two classes of events are not sufficient to distinguish all SA events from conventional type III bursts. The consistent lack of reported metric type III activity during the latter part of the candidate events suggests that some of the electrons are accelerated high in the corona, at or near the altitude of the shock.  相似文献   

8.
The concept of homology, introduced by Ellison, Mc Kenna, and Rceid (1960) for optical flares, can be extended to flare-associated radio events. Successive flares within the same centre of activity sometimes produce radio events that are remarkably similar. The similarity amounts to the fact that they extend over about the same range(s) in frequency, producing at each frequency responses of comparable intensity and duration. On some occasions the intensity curves at individual frequencies show even detailed resemblance. The occurrence of homologous radio events is commonly restricted to periods of less than 48 hours.Without being homologous, radio events that occur in the same centre of activity may present a common characteristic that is typical for that centre. Two such characteristics are (1) the production of radio responses at centimetric, decimetric and metric frequencies, and (2) the impulsiveness of microwave outbursts. The distribution of time intervals during which such bursts occur is compared with the same distribution for homologous events (Figure 3).  相似文献   

9.
We propose a closed loop model of turbulent stochastic acceleration for the gradual phase of the radio burst of 1981 April 27. It can explain the various observed features in the spectrum, the rather long time of rise, the absence of X-ray bursts below 56 keV and of any detectable proton events.  相似文献   

10.
Solar radio bursts at long wavelengths provide information on solar disturbances such as coronal mass ejections (CMEs) and shocks at the moment of their departure from the Sun. The radio bursts also provide information on the physical properties (density, temperature and magnetic field) of the medium that supports the propagation of the disturbances with a valuable cross-check from direct imaging of the quiet outer corona. The primary objective of this paper is to review some of the past results and highlight recent results obtained from long-wavelength observations. In particular, the discussion will focus on radio phenomena occurring in the outer corona and beyond in relation to those observed in white light. Radio emission from nonthermal electrons confined to closed and open magnetic structures and in large-scale shock fronts will be discussed with particular emphasis on its relevance to solar eruptions. Solar cycle variation of the occurrence rate of shock-related radio bursts will be discussed in comparison with that of interplanetary shocks and solar proton events. Finally, case studies describing the newly-discovered radio signatures of interacting CMEs will be presented.  相似文献   

11.
This paper discusses the relationship between some characteristics of microwave type IV radio bursts and solar cosmic ray protons of MeV energy. It is shown that the peak flux intensity of those bursts is almost linearly correlated with the MeV proton peak flux observed by satellites near the Earth and that protons and electrons would be accelerated simultaneously by a similar mechanism during the explosive phase of solar flares.Brief discussion is given on the propagation of solar cosmic rays in the solar envelope after ejection from the flare regions.  相似文献   

12.
We present study of relationship of GSXR flares with Hα flares, hard X-ray (HXR) bursts, microwave (MW) bursts at 15.4 GHz, type II/IV radio bursts, coronal mass ejections (CMEs), protons flares (>10 MeV) and ground level enhancement (GLE) events we find that about 85.7%, 93%, 97%, 69%, 60%, 11.1%, 79%, 46%, and 23%% GSXR flares are related/associated with observed Hα flares, HXR bursts, MW bursts at 15.4 GHz, type II radio bursts, type IV radio bursts, GLE events, CMEs, halo CMEs, and proton flares (>10 MeV), respectively. In the paper we have studied the onset time delay of GSXR flares with Hα flares, HXR, and MW bursts which shows the during majority GSXR flares SXR emissions start before the Hα, HXR and MW emissions, respectively while during 15–20% of GSXR flares the SXR emissions start after the onset of Hα, HXT and MW emissions, respectively indicating two types of solar flares. The, onset time interval between SXR emissions and type II radio bursts, type IV radio bursts, GLE events CMEs, halo CMEs, and protons flares are 1–15 min, 1–20 min, 21–30 min, 21–40 min, 21–40 min, and 1–4 hrs, respectively. Following the majority results we are of the view that the present investigations support solar flares models which suggest flare triggering first in the corona and then move to chromospheres/ photosphere to starts emissions in other wavelengths. The result of the present work is largely consistent with “big flare syndrome” proposed by Kahler (1982).  相似文献   

13.
We discuss the properties of white light flares on the basis of the published accounts of these events, together with the associated H flares, radio bursts, X-ray bursts, proton events and ionosperic distrubances. In addition, spectral plates taken at Purple Mountain Observatory since 1962 have been examined. We found that 5% of the spectrograms of solar flares show variable white-light emission. A minority of the white light flares are associated with H flare of small importance classes. We think these may be caused by perturbations originating in the convective zone below, while the majority accompanied by high-energy events are caused by the bombardment of energetic particles from above.  相似文献   

14.
Solar energetic particles (SEPs) detected in space are statistically associated with flares and coronal mass ejections (CMEs). But it is not clear how these processes actually contribute to the acceleration and transport of the particles. The present work addresses the question why flares accompanied by intense soft X-ray bursts may not produce SEPs detected by observations with the GOES spacecraft. We consider all X-class X-ray bursts between 1996 and 2006 from the western solar hemisphere. 21 out of 69 have no signature in GOES proton intensities above 10 MeV, despite being significant accelerators of electrons, as shown by their radio emission at cm wavelengths. The majority (11/20) has no type III radio bursts from electron beams escaping towards interplanetary space during the impulsive flare phase. Together with other radio properties, this indicates that the electrons accelerated during the impulsive flare phase remain confined in the low corona. This occurs in flares with and without a CME. Although GOES saw no protons above 10 MeV at geosynchronous orbit, energetic particles were detected in some (4/11) confined events at Lagrangian point L1 aboard ACE or SoHO. These events have, besides the confined microwave emission, dm-m wave type II and type IV bursts indicating an independent accelerator in the corona. Three of them are accompanied by CMEs. We conclude that the principal reason why major solar flares in the western hemisphere are not associated with SEPs is the confinement of particles accelerated in the impulsive phase. A coronal shock wave or the restructuring of the magnetically stressed corona, indicated by the type II and IV bursts, can explain the detection of SEPs when flare-accelerated particles do not reach open magnetic field lines. But the mere presence of these radio signatures, especially of a metric type II burst, is not a sufficient condition for a major SEP event.  相似文献   

15.
Š. Pintér 《Solar physics》1969,8(1):149-151
Conclusions The present paper demonstrates on the basis of 2 series of events that one can extend the homology so far known for optical and radio flares also to the hard and soft X-ray bursts.The studied homologous X-ray flares occurred in the same active region and their time-intensity profiles were very similar. It has been found that the detected homologous X-ray bursts are associated with radio bursts that also are homologous. The time profile of centimeter radio bursts frequently is repeated in detail when compared with the time profile of X-ray bursts as one can see in Figure 1. This very close correspondence suggests that the centimeter radio bursts and X-ray bursts are generated simultaneously during flares, probably in the same region (Sengupta, 1968). Arnoldy et al. (1968) have found a detailed correlation between the time-intensity profiles of hard X-ray bursts and 3 or 10 cm radio bursts. This close correlation between the hard X-ray bursts and centimeter radio bursts leads to a suggestion that the hard X-ray and centimeter radio bursts are generated by the same electrons. On the basis of these considerations one can more easily understand the homology of both the X-ray bursts and the radio bursts. The occurrence of homologous bursts then can be explained by an existence of regions on the sun in which for a certain time (48 h after Fokker) the same conditions are maintained in the acceleration of the electrons generating the X-ray and radio bursts.  相似文献   

16.

We have statistically analyzed a set of 115 low frequency (Deca-Hectometer wavelengths range) type II and type III bursts associated with major Solar Energetic Particle (SEP: Ep?>?10 MeV) events and their solar causes such as solar flares and coronal mass ejections (CMEs) observed from 1997 to 2014. We classified them into two sets of events based on the duration of the associated solar flares:75 impulsive flares (duration <?60 min) and 40 gradual flares (duration >?60 min).On an average, the peak flux (integrated flux) of impulsive flares?×?2.9 (0.32 J m?2) is stronger than that of gradual flares M6.8 (0.24 J m?2). We found that impulsive flare-associated CMEs are highly decelerated with larger initial acceleration and they achieved their peak speed at lower heights (??27.66 m s?2 and 14.23 Ro) than the gradual flare-associated CMEs (6.26 m s?2 and 15.30 Ro), even though both sets of events have similar sky-plane speed (space speed) within LASCO field of view. The impulsive flare-associated SEP events (Rt?=?989.23 min: 2.86 days) are short lived and they quickly reach their peak intensity (shorter rise time) when compared with gradual flares associated events (Rt?=?1275.45 min: 3.34 days). We found a good correlation between the logarithmic peak intensity of all SEPs and properties of CMEs (space speed: cc?=?0.52, SEcc?=?0.083), and solar flares (log integrated flux: cc?=?0.44, SEcc?=?0.083). This particular result gives no clear cut distinction between flare-related and CME-related SEP events for this set of major SEP events. We derived the peak intensity, integrated intensity, duration and slope of these bursts from the radio dynamic spectra observed by Wind/WAVES. Most of the properties (peak intensity, integrated intensity and starting frequency) of DH type II bursts associated with impulsive and gradual flare events are found to be similar in magnitudes. Interestingly, we found that impulsive flare-associated DH type III bursts are longer, stronger and faster (31.30 min, 6.43 sfu and 22.49 MHz h?1) than the gradual flare- associated DH type III bursts (25.08 min, 5.85 sfu and 17.84 MHz h?1). In addition, we also found a significant correlation between the properties of SEPs and key parameters of DH type III bursts. This result shows a closer association of peak intensity of the SEPs with the properties of DH type III radio bursts than with the properties DH type II radio bursts, atleast for this set of 115 major SEP events.

  相似文献   

17.
J. Huang  Y. H. Yan  Y. Y. Liu 《Solar physics》2008,253(1-2):143-160
We have selected 27 solar microwave burst events recorded by the Solar Broadband Radio Spectrometer (SBRS) of China, which were accompanied by M/X class flares and fast CMEs. A total of 70.4% of radio burst events peak at 2.84 GHz before the peaks of the related flares’ soft X-ray flux with an average time difference of about 6.7 minutes. Almost all of the CMEs start before or around the radio burst peaks. At 2.6?–?3.8 GHz bandwidth, 234 radio fine structures (FSs) were classified. More often, some FSs appear in groups, which can contain several individual bursts. It is found that many more radio FSs occur before the soft X-ray maxima and even before the peaks of radio bursts at 2.84 GHz. The events with high peak flux at 2.84 GHz have many more radio FSs and the durations of the radio bursts are independent of the number of radio FSs. Parameters are given for zebra patterns, type III bursts, and fiber structures, and the other types of FSs are described briefly. These radio FSs include some special types of FSs such as double type U bursts and W-type bursts.  相似文献   

18.
We report the results of 1966, 1968, and 1969 polarization measurements of solar type III radio noise bursts made by recording the output of two orthogonally polarized receiving channels and subsequent digital processing of selected data. The processed data yield total intensity, degree of polarization, ellipticity, and polarization ellipse orientation at 1 second intervals. The measurements are made in a 100 Hz bandwith to minimize the influence of the propagating medium on the measurements. The mean degree of polarization was found to be about 65% in contrast to previous studies which indicated that type III events were more weakly polarized. By assuming that type III bursts are flare related we study the polarization characteristics of type III bursts as a function of the solar longitude of the related flares. The relation between type III event polarization characteristics and flare importance is also investigated. The significance of polarization measurements in studies of solar radio events is pointed out and suggestions for further theoretical research are given.  相似文献   

19.
We discuss a possible generation of radio bursts preceding final stages of binary neutron star mergings which can be accompanied by short gamma-ray bursts. Detection of such bursts appear to be advantageous in the low-frequency radio band due to a time delay of ten to several hundred seconds required for radio signal to propagate in the ionized intergalactic medium. This delay makes it possible to use short gamma-ray burst alerts to promptly monitor specific regions on the sky by low-frequency radio facilities, especially by LOFAR. To estimate the strength of the radio signal, we assume a power-law dependence of the radio luminosity on the total energy release in a magnetically dominated outflow, as found in millisecond pulsars. Based on the planned LOFAR sensitivity at 120 MHz, we estimate that the LOFAR detection rate of such radio transients could be about several events per month from redshifts up to z∼1.3 in the most optimistic scenario. The LOFAR ability to detect such events would crucially depend on exact efficiency of low-frequency radio emission mechanism.  相似文献   

20.
The peak times of impulsive microwave bursts are compared with those of shock-associated (SA) kilometric radio events. The first peaks in these two frequency regimes are usually well-correlated in time, but the last peaks of the SA events observed at 1 MHz occur an average of 20 min after the last impulsive microwave peaks. In some cases, the SA events overlap in time with the post-burst increases of microwave bursts; sometimes there is general correspondence in their intensity time profiles. These observations suggest that the earlier components of the SA events are usually caused by electrons accelerated in or near the microwave source region. We discuss the possibility that the later components of some SA events could be associated with nonthermal electrons responsible for microwave post-burst increases, although they have traditionally been attributed to electrons accelerated at type II burst producing shocks in the upper corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号