首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ghanbari RN  Bravo HR 《Ground water》2011,49(4):476-490
Climate signals may affect groundwater level at different time scales in different geographical regions, and those patterns or time scales can be estimated using coherence analysis. This study shows that the synthesis effort required to search for patterns at the physical geography scale is possible, and this approach should be applicable in other regions of the world. The relations between climate signals, Southern Oscillation Index, Pacific Decadal Oscillation, North Atlantic Oscillation, North Pacific Pattern (SOI, PDO, NAO, and NP), precipitation, and groundwater level in three geographical areas of Wisconsin are examined using a three-tiered coherence analysis. In the high frequency band (<4(-1) cycles/year), there is a significant coherence between four climate signals and groundwater level in all three areas. In the low frequency band (>8(-1) to ≤23(-1) cycles/year), we found significant coherence between the SOI and NP signals and groundwater level in the forested area, characterized by shallow wells constructed in sand and gravel aquifers. In the high frequency band, there is significant coherence between the four climate signals and precipitation in all three areas. In the low frequency band, the four climate signals have effect on precipitation in the agricultural area, and SOI and NP have effect on precipitation in the forested and driftless areas. Precipitation affects groundwater level in all three areas, and in high, low and intermediate frequency bands. In the agricultural area, deeper aquifers and a more complex hydrostratigraphy and land use dilute the effect of precipitation on groundwater level for interdecadal frequencies.  相似文献   

3.
We investigated the frequency domain relationships between four atmospheric teleconnections (Trans-Niño Index TNI, Pacific Decadal Oscillation PDO, Northern Annular Mode/Arctic Oscillation Index NAM/AO, and Pacific/North American PNA pattern) and water levels in the Great Lakes from 1948 to 2002 by quantifying the coherence between these time series. The levels in all Great Lakes are significantly correlated with the TNI in the frequency range (3–7)−1 cycles year−1, and with the PDO in interdecadal frequencies. The levels in Lakes Superior, Michigan, and Erie are significantly correlated with the PNA pattern in interdecadal frequencies, and the levels in all Great Lakes are significantly correlated with the NAM/AO in interannual frequencies.  相似文献   

4.
Skillful streamflow forecasts at seasonal lead times may be useful to water managers seeking to provide reliable water supplies and maximize hydrosystem benefits. In this study, a class of data mining techniques, known as tree-structured models, is investigated to address the nonlinear dynamics of climate teleconnections and screen promising probabilistic streamflow forecast models for river–reservoir systems. In a case study of the Lower Colorado River system in central Texas, a number of potential predictors are evaluated for forecasting seasonal streamflow, including large-scale climate indices related to the El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and others. Results show that the tree-structured models can effectively capture the nonlinear features hidden in the data. Skill scores of probabilistic forecasts generated by both classification trees and logistic regression trees indicate that seasonal inflows throughout the system can be predicted with sufficient accuracy to improve water management, especially in the winter and spring seasons in central Texas.  相似文献   

5.
Long hydroclimate records are essential elements for the assessment and management of changing freshwater resources. These records are especially important in transboundary watersheds where international cooperation is required in the joint planning and management process of shared basins. Dendrochronological techniques were used to develop a multicentury record of April 1 snow water equivalent (SWE) for the Stikine River basin in northern British Columbia, Canada, from moisture‐sensitive white spruce (Picea glauca) tree rings. Explaining 43% of the instrumental SWE variability, to our knowledge, this research represents the first attempt to develop long‐term snowpack reconstructions in northern British Columbia. The results indicated that 15 extreme low April 1 SWE events occurred from 1789 to the beginning of the instrumental record in 1974. The reconstruction record also shows that the occurrence of hydrological extremes in the Stikine River basin is characterized by persistent below‐average periods in SWE consistent with phase shifts of the Pacific Decadal Oscillation (PDO). Spectral analyses indicate a very distinct in‐phase (positive) relationship between the multidecadal frequencies of variability (~40 years) extracted from the SWE tree‐ring reconstruction and other reconstructed winter and spring PDO indices. Comparison of the reconstructed SWE record with other tree‐ring‐derived PDO proxy records shows coherence at multidecadal frequencies of variability. The research has significant implications for regional watershed management by highlighting the hydrological response of the Stikine River basin to prior climate changes.  相似文献   

6.
The northern portion of the Pacific coastal temperate rainforest (PCTR) is one of the least anthropogenically modified regions on earth and remains in many respects a frontier area to science. Rivers crossing the northern PCTR, which is also an international boundary region between British Columbia, Canada and Alaska, USA, deliver large freshwater and biogeochemical fluxes to the Gulf of Alaska and establish linkages between coastal and continental ecosystems. We evaluate interannual flow variability in three transboundary PCTR watersheds in response to El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and North Pacific Gyre Oscillation (NPGO). Historical hydroclimatic datasets from both Canada and the USA are analyzed using an up-to-date methodological suite accommodating both seasonally transient and highly nonlinear teleconnections. We find that streamflow teleconnections occur over particular seasonal windows reflecting the intersection of specific atmospheric and terrestrial hydrologic processes. The strongest signal is a snowmelt-driven flow timing shift resulting from ENSO- and PDO-associated temperature anomalies. Autumn rainfall runoff is also modulated by these climate modes, and a glacier-mediated teleconnection contributes to a late-summer ENSO-flow association. Teleconnections between AO and freshet flows reflect corresponding temperature and precipitation anomalies. A coherent NPGO signal is not clearly evident in streamflow. Linear and monotonically nonlinear teleconnections were widely identified, with less evidence for the parabolic effects that can play an important role elsewhere. The streamflow teleconnections did not vary greatly between hydrometric stations, presumably reflecting broad similarities in watershed characteristics. These results establish a regional foundation for both transboundary water management and studies of long-term hydroclimatic and environmental change.  相似文献   

7.
ABSTRACT

In this research, the Bayesian quantile regression model is applied to investigate the teleconnections between large oceanic–atmospheric indices and drought standardized precipitation index (SPI) in Iran. The 12-month SPI time series from 138 synoptic stations for 1952–2014 were selected as the drought index. Three oceanic–atmospheric indices, the North Atlantic Oscillation (NAO), the Southern Oscillation Index (SOI) and the Multivariate El Niño/Southern Oscillation Index (MEI), were selected as covariates. The results show that NAO has the weakest impact on drought in different quantiles and different regions in Iran. La Niña conditions amplified droughts through all SPI quantiles in western, Caspian Sea coastal regions and southern regions. The positive phase of MEI significantly modulates low SPI quantiles (i.e. drought conditions) throughout the Zagros region, Caspian Sea coastal regions and southern regions. The study shows that the effect of large oceanic–atmospheric indices have heterogeneous impacts on extreme dry and wet conditions.  相似文献   

8.
北半球大气遥相关型与区域尺度大气扰动   总被引:4,自引:2,他引:2       下载免费PDF全文
北极涛动(AO)、北大西洋涛动(NAO)和太平洋—北美型(PNA)等北半球大气遥相关型,可以用大气位势高度的物理分解扰动分量解释.结果发现,AO反映的是北极地区行星尺度纬圈平均扰动分量的变化,PNA与持续性天气尺度扰动分量相联系,NAO是行星尺度纬圈平均扰动与天气尺度扰动共同作用的结果.对行星尺度纬圈平均扰动分量和天气尺度扰动分量用旋转经验正交函数(REOF)展开,不但可以证实人们已经命名的区域性大气涛动,还新发现了北极地区的两对偶极涛动、欧亚涛动(EAO)和"大西洋—欧亚型"(AEA)波列.这些涛动连接了相邻地区的异常天气和异常气候.  相似文献   

9.
Climate patterns over preceding years affect seasonal water and moisture conditions. The linkage between regional climate and local hydrology is challenging due to scale differences, both spatially and temporally. In this study, variance, correlation, and singular spectrum analyses were conducted to identify multiple hydroclimatic phases during which climate teleconnection patterns were related to hydrology of a small headwater basin in Idaho, USA. Combined field observations and simulations from a physically based hydrological model were used for this purpose. Results showed statistically significant relations between climate teleconnection patterns and hydrological fluxes in the basin, and climate indices explained up to 58% of hydrological variations. Antarctic Oscillation (AAO), North Atlantic Oscillation (NAO), and Pacific North America (PNA) patterns affected mountain hydrology, in that order, by decreasing annual runoff and rain on snow (ROS) runoff by 43% and 26% during a positive phase of NAO and 25% and 9% during a positive phase of PNA. AAO showed a significant association with the rainfall-to-precipitation ratio and explained 49% of its interannual variation. The runoff response was affected by the phase of climate variability indices and the legacy of past atmospheric conditions. Specifically, a switch in the phase of the teleconnection patterns of NAO and PNA caused a transition from wet to dry conditions in the basin. Positive AAO showed no relation with peak snow water equivalent and ROS runoff in the same year, but AAO in the preceding year explained 24 and 25% (p < 0.05) of their variations, suggesting that the past atmospheric patterns are equally important as the present conditions in affecting local hydrology. Areas sheltered from the wind and acted as a source for snow transport showed the lowest (40% below normal) ROS runoff generation, which was associated with positive NAO that explained 33% (p < 0.01) of its variation. The findings of this research highlighted the importance of hydroclimatic phases and multiple year variations that must be considered in hydrological forecasts, climate projections, and water resources planning.  相似文献   

10.
In this study, Turkish climatic variables (precipitation, stream flow and maximum and minimum temperatures) were first analysed in association with both the Southern Oscillation (SO) and the North Atlantic Oscillation (NAO). The relationships between Turkish maximum and minimum monthly temperatures and the extreme phases of the SO (El Niño and La Niña events) were examined. The results of this analysis showed that relationships between Turkish monthly maximum temperatures and El Niño and La Niña contain some complexity still to be identified, because both events produce a signal indicating a correspondence with cold anomalies in the aggregate composites. A relationship between turkish minimum temperatures and El Niño was detected in western Anatolia, whereas there was no significant and consistent signal associated with La Niña. Moreover a series of cross‐correlation analyses was carried out to demonstrate the teleconnections between the climatic variables and both the NAO and SO. The NAO during winter was found to influence precipitation and stream‐flow patterns. In contrast temperature patterns appeared to be less sensitive to the NAO. Furthermore, lag‐correlation results indicated a prediction potential for both precipitation and stream‐flow variables in connection with the NAO. Simultaneous and time‐lag correlations between the climatic variables and the SO index, in general, indicated weaker relationships in comparison with those for the NAO. These analyses also showed that the influences of the SO on Turkish temperature data are negligible. The outcomes were presented in conjunction with an explanation regarding physical mechanisms behind the implied teleconnections. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
北半球环状模周期变化和突变研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用NOAA提供的1871-2008年月平均海平面气压场、雪盖、海冰等再分析资料、NASA提供的地表温度场资料、太平洋年代际振荡(PDO)指数,采用小波分析、带通滤波和凝聚谱分析等方法,研究了北半球环状模(NAM)周期变化及其影响因子.研究结果表明NAM在20世纪60年代前后发生了显著的年代际尺度周期突变,NAM在1895-1955年存在显著的准35年周期振荡,而在1971-2008年则主要以准15年周期振荡为主.NAM年代际尺度周期突变与外强迫源振荡周期变化有关,但突变前后与NAM周期振荡密切相关的外强迫因子并不尽相同.在1960年代之前,PDO、ATM、北美雪盖以及南极海冰涛动等外源强迫因子与NAM在准35年尺度上关系密切;而在1960年之后,NAM准15年振荡则与ATM和欧洲雪盖、南极海冰涛动等因素有关.  相似文献   

12.
The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are two important climate oscillations that affect hydrological processes at global and regional scales. However, few studies have attempted to identify their single and combined influences on water discharge variability at multiple timescales. In this study, we examine temporal variation in water discharge from the Yangtze River into the sea and explore the influence of the ENSO and the PDO on multiscale variations in water discharge over the last century. The results of the wavelet transform analysis of the water discharge series show significant periodic variations at the interannual timescale of 2 to 8 years and the decadal timescale of 15 to 17 years. Water discharge tended to be higher during the La Niña–PDO cold phase and lower during the El Niño–PDO warm phase. The results of the cross wavelet spectrum and wavelet coherence analyses confirm the relationship between the interannual (i.e., 2 to 8 years) and decadal (i.e., 15 to 17 years) periodicities in water discharge with the ENSO and the PDO, respectively. As an important large‐scale climate background, the PDO can modulate the influence of the ENSO on water discharge variability. In general, the warm PDO enhances the influence of El Niño events, and the cold PDO enhances the influence of La Niña events. Our study is helpful in understanding the influencing mechanism of climate change on hydrological processes and provides an important scientific guideline for water resource prediction and management.  相似文献   

13.
Effects of Arctic Sea Ice Decline on Weather and Climate: A Review   总被引:7,自引:0,他引:7  
The areal extent, concentration and thickness of sea ice in the Arctic Ocean and adjacent seas have strongly decreased during the recent decades, but cold, snow-rich winters have been common over mid-latitude land areas since 2005. A review is presented on studies addressing the local and remote effects of the sea ice decline on weather and climate. It is evident that the reduction in sea ice cover has increased the heat flux from the ocean to atmosphere in autumn and early winter. This has locally increased air temperature, moisture, and cloud cover and reduced the static stability in the lower troposphere. Several studies based on observations, atmospheric reanalyses, and model experiments suggest that the sea ice decline, together with increased snow cover in Eurasia, favours circulation patterns resembling the negative phase of the North Atlantic Oscillation and Arctic Oscillation. The suggested large-scale pressure patterns include a high over Eurasia, which favours cold winters in Europe and northeastern Eurasia. A high over the western and a low over the eastern North America have also been suggested, favouring advection of Arctic air masses to North America. Mid-latitude winter weather is, however, affected by several other factors, which generate a large inter-annual variability and often mask the effects of sea ice decline. In addition, the small sample of years with a large sea ice loss makes it difficult to distinguish the effects directly attributable to sea ice conditions. Several studies suggest that, with advancing global warming, cold winters in mid-latitude continents will no longer be common during the second half of the twenty-first century. Recent studies have also suggested causal links between the sea ice decline and summer precipitation in Europe, the Mediterranean, and East Asia.  相似文献   

14.
Two analyses, one based on multiple regression and the other using the Holt–Winters algorithm, for investigating non‐stationarity in environmental time series are presented. They are applied to monthly rainfall and average maximum temperature time series of lengths between 38 and 108 years, from six stations in the Murray Darling Basin and four cities in eastern Australia. The first analysis focuses on the residuals after fitting regression models which allow for seasonal variation, the Pacific Decadal Oscillation (PDO) and the Southern Oscillation Index (SOI). The models provided evidence that rainfall is reduced during periods of negative SOI, and that the interaction between PDO and SOI pronounces this effect during periods of negative PDO. Following this, there was no evidence of any trend in either the PDO or SOI time series. The residuals from this regression were analysed with a cumulative sum (CUSUM) technique, and the statistical significance was assessed using a Monte Carlo method. The residuals were also analysed for volatility, autocorrelation, long‐range dependence and spatial correlation. For all ten rainfall and temperature time series, CUSUM plots of the residuals provided evidence of non‐stationarity for both temperature and rainfall, after removing seasonal effects and the effects of PDO and SOI. Rainfall was generally lower in the first half of the twentieth century and higher during the second half. However, it decreased again over the last 10 years. This pattern was highlighted with 5‐year moving average plots. The residuals for temperature showed a complementary pattern with increases in temperature corresponding to decreased rainfall. The second analysis decomposed the rainfall and temperature time series into random variation about an underlying level, trend and additive seasonal effects and changes in the level; trend and seasonal effects were tracked using a Holt–Winters algorithm. The results of this analysis were qualitatively similar to those of the regression analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Snow is an important component of the Earth's climate system and is particularly vulnerable to global warming. It has been suggested that warmer temperatures may cause significant declines in snow water content and snow cover duration. In this study, snowfall and snowmelt were projected by means of a regional climate model that was coupled to a physically based snow model over Shasta Dam watershed to assess changes in snow water content and snow cover duration during the 21st century. This physically based snow model requires both physical data and future climate projections. These physical data include topography, soils, vegetation, and land use/land cover, which were collected from associated organizations. The future climate projections were dynamically downscaled by means of the regional climate model under 4 emission scenarios simulated by 2 general circulation models (fifth‐generation of the ECHAM general circulation model and the third‐generation atmospheric general circulation model). The downscaled future projections were bias corrected before projecting snowfall and snowmelt processes over Shasta Dam watershed during 2010–2099. This study's results agree with those of previous studies that projected snow water equivalent is decreasing by 50–80% whereas the fraction of precipitation falling as snowfall is decreasing by 15% to 20%. The obtained projection results show that future snow water content will change in both time and space. Furthermore, the results confirm that physical data such as topography, land cover, and atmospheric–hydrologic data are instrumental in the studies on the impact of climate change on the water resources of a region.  相似文献   

16.
Abstract

This study was carried out in the framework of the Surface Water and Ocean Topography (SWOT) programme of the French National Centre of Space Studies (CNES). Based on discharge measurements and Gravity Recovery and Climate Experiment (GRACE) determination of total water storage (TWS), we have investigated the hydrological variability of the main French drainage basins (Seine, Loire, Garonne and Rhône) using a wavelet approach (continuous wavelet analyses and wavelet coherence analyses). The results of this analysis have shown a coherence ranging between 82% and 90% for TWS and discharge, thus demonstrating the potential use of TWS for characterization of the hydrological variability of French rivers. Strong coherence between the four basin discharges (between 73% and 92%) and between their associated TWS data (from 82% to 98%) suggested a common external influence on hydrological variability. To determine this influence, we investigated the relationship between hydrological variability and the North Atlantic Oscillation (NAO), considered as an index of prevailing climate in Europe. Basin discharges show strong coherence with NAO, ranging between 64% and 72% over the period 1959–2010. The coherence between NAO and TWS was 62% to 67% for 2003–2009. This is similar to the coherence between NAO and basin discharges detected for the same period. According to these results, strong influence of the NAO was clearly observed on the TWS and discharges of the major French river basins.
Editor Z.W. Kundzewicz  相似文献   

17.
The snowfall in the Baltimore/Washington metropolitan area during the winter of 2009/2010 was unprecedented and caused serious snow‐related disruptions. In February 2010, snowfall totals approached 2 m, and because maximum temperatures were consistently below normal, snow remained on the ground the entire month. One of the biggest contributing factors to the unusually severe winter weather in 2009/2010, throughout much of the middle latitudes, was the Arctic Oscillation. Unusually high pressure at high latitudes and low pressure at middle latitudes forced a persistent exchange of mass from north to south. In this investigation, a concerted effort was made to link remotely sensed falling snow observations to remotely sensed snow cover and snowpack observations in the Baltimore/Washington area. Specifically, the Advanced Microwave Scanning Radiometer onboard the Aqua satellite was used to assess snow water equivalent, and the Advanced Microwave Sounding Unit‐B and Microwave Humidity Sounder were employed to detect falling snow. Advanced Microwave Scanning Radiometer passive microwave signatures in this study are related to both snow on the ground and surface ice layers. In regard to falling snow, signatures indicative of snowfall can be observed in high frequency brightness temperatures of Advanced Microwave Sounding Unit‐B and Microwave Humidity Sounder. Indeed, retrievals show an increase in snow water equivalent after the detection of falling snow. Yet, this work also shows that falling snow intensity and/or the presence of liquid water clouds impacts the ability to reliably detect snow water equivalent. Moreover, changes in the condition of the snowpack, especially in the surface features, negatively affect retrieval performance. Copyright © 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
Changes of snow cover in Poland   总被引:2,自引:2,他引:0  
The present paper examines variability of characteristics of snow cover (snow cover depth, number of days with snow cover and dates of beginning and end of snow cover) in Poland. The study makes use of a set of 43 long time series of observation records from the stations in Poland, from 1952 to 2013. To describe temporal changes in snow cover characteristics, the intervals of 1952–1990 and of 1991–2013 are compared and trends in analysed data are sought (e.g., using the Mann–Kendall test). Observed behaviour of time series of snow-related variables is complex and not easy to interpret, for instance because of the location of the research area in the zone of transitional moderate climate, where strong variability of climate events is one of the main attributes. A statistical link between the North Atlantic Oscillation (NAO) index and the snow cover depth, as well as the number of snow cover days is found.  相似文献   

19.

基于1961-2014年中国台站观测资料和NECP/NCAR再分析资料,对影响中国北方强降雪事件(日降雪量5 mm及以上,包括大到暴雪)年际变化的典型大尺度环流特征和水汽条件进行了综合分析.结果表明:中国北方强降雪事件主要集中在新疆北部和东北两个地区,而且强降雪日数和降雪量具有高度一致的年际变化特征.中国北方强降雪事件偏多时,对应北大西洋涛动(NAO)和北极涛动(AO)负位相;贝加尔湖上空维持异常低槽区,有利于冷空气的爆发南下;热带印度洋至热带西太平洋上空维持一条异常反气旋带,有利于暖湿气流向北输送;中国北方及以北区域高空为异常西风气流,提供有利的动力抬升条件,使得强降雪易于在中国北方发生;反之亦然.水汽收支分析显示,中国北方西边界和南边界水汽入流增强在强降雪偏多中起着主要贡献.异常西风水汽输送利于新疆北部大到暴雪偏多,异常西南风水汽输送则利于东北地区大到暴雪的发生.进一步研究揭示:与小雪相比,影响中国北方大到暴雪年际偏多的中高纬环流特征相类似,但环流经向度更大;而且大到暴雪与NAO和AO的关系更密切,并更多的受到来自中低纬地区的水汽输送影响.

  相似文献   

20.
It is a common practice to employ hydrologic models for assessing present and future states of watersheds and assess the degree of alterations for a range of hydrologic indicators. Previous studies indicate that the hydrologic model may not be able to replicate some of the indicators of interest, which raises questions on the reliability of model simulated changes. Hence, we initiated a study to evaluate the replicability of the streamflow changes by employing the widely used variable infiltration capacity hydrologic model for sub‐basins and mainstem of the Fraser River Basin, Canada. Given that the hydrologic regime of the region is known to be influenced by teleconnections to the Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO), we used hydrologic responses to the PDO and ENSO states as analogues for evaluating the model's ability to simulate climate‐induced changes. The results revealed that the qualitative patterns of response, such as lower flows for the warm PDO state compared to the cool state, and progressively higher flows for the warm, neutral and cool ENSO states, were generally well reproduced for most hydrologic indicators. Additionally, while the directions of change between the different PDO and ENSO states were mostly well replicated, the magnitude of change for some of the indicators showed considerable differences. Hence, replicability of both magnitude and direction of change need to be carefully examined before using the simulated indicators for assessing future hydrologic changes, and a reliable replication increases the confidence of projected changes. Copyright © 2016 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号