首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tectonic activity, sea-level changes, and the climate controlled sedimentation in Late Paleozoic basins of western Argentina. The role of each factor is investigated from the geologic record of the Río Blanco and Paganzo basins using three hierarchical orders of stratigraphic bounding surfaces. First-order surfaces correspond to regional unconformities, second-order ones to local unconformities with a lesser regional extent, and third-order surfaces represent locally extended sedimentary truncation. Using this methodology, the Carboniferous–Permian record of the Paganzo and Río Blanco basins may be divided into two megasequences, four sequences, and 12 stratigraphic sections. Megasequences are bounded by regional unconformities that result from tectonic events important enough to cause regional paleogeographic changes. Sequences are limited by minor regional extension surfaces related to local tectonic movements or significant sea-level falls. Finally, stratigraphic sections correspond to extended sedimentary truncations produced by transgressive events or major climatic changes. Sequence I is mainly composed of marine deposits divided into basal infill of the basin (Section 1) and Tournaisian–Visean transgressive deposits (Section 2). Sequence II is bounded by a sharp erosional surface and begins with coarse conglomerates (Section 3), followed by fluvial and shallow marine sedimentary rocks (Section 4) that pass upward into shales and diamictites (Section 5). The base of Sequence III is marked by an extended unconformity covered by Early Pennsylvanian glacial sedimentary rocks (Section 6) that represent the most important glacial event along the western margin of Gondwana. Postglacial deposits (Section 7) occur in the two basins and comprise both glaciolacustrine (eastern region) and transgressive marine (central and western regions) deposits. By the Moscovian–Kasimovian, fluvial sandstones and conglomerates were deposited in most of the Paganzo Basin (Section 8), while localized volcanic activity took place in the Río Blanco Basin. Near the end of the Carboniferous, an important transgression is recorded in the major part of the Río Blanco Basin (Section 9), reaching the westernmost portion area of the Paganzo Basin. Finally, Sequence IV shows important differences between the Paganzo and Río Blanco basins; fluvial red beds (Section 10), eolian sandstones (Section 11), and low-energy fluvial deposits (Section 12) prevailed in the Paganzo Basin whereas volcaniclastic sedimentation and volcanism dominated in the Río Blanco Basin. Thus, tectonic events, sea-level changes and climate exerted a strong and complex control on the evolution of the Río Blanco and Paganzo basins. The interaction of these allocyclic controls produced not only characteristic facies association patterns but also different kinds of stratigraphic bounding surfaces.  相似文献   

2.
Tectonic activity, sea-level changes, and the climate controlled sedimentation in Late Paleozoic basins of western Argentina. The role of each factor is investigated from the geologic record of the Río Blanco and Paganzo basins using three hierarchical orders of stratigraphic bounding surfaces. First-order surfaces correspond to regional unconformities, second-order ones to local unconformities with a lesser regional extent, and third-order surfaces represent locally extended sedimentary truncation. Using this methodology, the Carboniferous–Permian record of the Paganzo and Río Blanco basins may be divided into two megasequences, four sequences, and 12 stratigraphic sections. Megasequences are bounded by regional unconformities that result from tectonic events important enough to cause regional paleogeographic changes. Sequences are limited by minor regional extension surfaces related to local tectonic movements or significant sea-level falls. Finally, stratigraphic sections correspond to extended sedimentary truncations produced by transgressive events or major climatic changes. Sequence I is mainly composed of marine deposits divided into basal infill of the basin (Section 1) and Tournaisian–Visean transgressive deposits (Section 2). Sequence II is bounded by a sharp erosional surface and begins with coarse conglomerates (Section 3), followed by fluvial and shallow marine sedimentary rocks (Section 4) that pass upward into shales and diamictites (Section 5). The base of Sequence III is marked by an extended unconformity covered by Early Pennsylvanian glacial sedimentary rocks (Section 6) that represent the most important glacial event along the western margin of Gondwana. Postglacial deposits (Section 7) occur in the two basins and comprise both glaciolacustrine (eastern region) and transgressive marine (central and western regions) deposits. By the Moscovian–Kasimovian, fluvial sandstones and conglomerates were deposited in most of the Paganzo Basin (Section 8), while localized volcanic activity took place in the Río Blanco Basin. Near the end of the Carboniferous, an important transgression is recorded in the major part of the Río Blanco Basin (Section 9), reaching the westernmost portion area of the Paganzo Basin. Finally, Sequence IV shows important differences between the Paganzo and Río Blanco basins; fluvial red beds (Section 10), eolian sandstones (Section 11), and low-energy fluvial deposits (Section 12) prevailed in the Paganzo Basin whereas volcaniclastic sedimentation and volcanism dominated in the Río Blanco Basin. Thus, tectonic events, sea-level changes and climate exerted a strong and complex control on the evolution of the Río Blanco and Paganzo basins. The interaction of these allocyclic controls produced not only characteristic facies association patterns but also different kinds of stratigraphic bounding surfaces.  相似文献   

3.
The carbonatic sequence of the Calabozo Formation (Lower Callovian) developed in southwestern Gondwana, within the northern area of the Neuquén basin, and is widespread in thin isolated outcrops in southwestern Mendoza province, Argentina. This paper describes the facies, microfacies and geochemical-isotopic analysis carried out in five studied localities, which allowed to define the paleoenvironmental conditions of a homoclinal shallow ramp model, highly influenced by sea level fluctuations, where outer, mid and inner ramp subenvironments were identified. The outer ramp subenvironment was only recognized in the south of the depocenter and is characterized by proximal outer ramp facies with shale levels and interbedded mudstone and packstone layers. The mid ramp subenvironment is formed by low energy facies (wackestone) affected by storms (packstones, grainstones and floatstones). The inner ramp subenvironment is the most predominant and is characterized by tidal flat facies (wackestones, packstones and grainstones) over which a complex of shoals (grainstones and packstones) dissected by tidal channels (packstone, grainstones and floatstones) developed. In the north area, protected environment facies were recorded (bioturbated wackestones and packstones). The vertical distribution of facies indicates that the paleoenvironmental evolution of the Calabozo Formation results from a highstand stage in the depocenter, culminating in a supratidal environment, with stromatolitic levels interbedded with anhydrite originated under restricted water circulation conditions due to a progressive isolation of the basin. δ13C and δ18O values of the carbonates of the Calabozo Formation suggest an isotopic signature influenced by local palaeoenvironmental parameters and diagenetic overprints. The δ13C and δ18O oscillations between the carbonates of the different studied sections are related with lateral facies variations within the carbonate ramp accompanied with dissimilar reactivities in relation to diagenetic fluids. The δ18O values of all sections exhibit a rather broad scatter which may be attributed to diagenesis and recrystallisation while the carbon isotopic composition has been less affected by those processes. Carbon isotope system has best retained the primary isotopic signal and δ13C values (0–3.9‰) are within the Callovian isotope range. The 87Sr/86Sr ratios of the bulk carbonates of El Plomo creek, La Vaina creek and Potimalal River sections are in agreement with the Callovian seawater Sr-isotope curve.  相似文献   

4.
Lower Paleozoic moderately sorted quartz–arenites from the Balcarce Formation deposited in eastern Argentina (Tandilia System) comprise mainly detrital material derived from old upper crustal material. The sources were magmatic, sedimentary, and subordinated felsic metamorphic terranes. High concentrations of tourmaline and Ti-rich heavy minerals, including zircon and nearly euhedral chromite, are common. Trace element concentrations (Nb, Cr) on rutile indicate pelitic and metabasaltic sources, respectively. Major element analyses on chromites indicate a basic volcanic protolith of mid-oceanic ridge origin, which was exposed close to the depositional basin. The delivery of chromite may be associated with convergent tectonics causing the consumption and obduction of oceanic crust during pre-Upper Ordovician times. The oblique/orthogonal collision of the Precordillera Terrane with the western border of the Rio de la Plata Craton, west of the Balcarce Basin or source further to the east from a Lower Palaeozoic extensional basin are possibilities.Geochemical and petrographic data exclude the underlying Precambrian and Cambrian sedimentary rocks as dominant sources, and favour the basement of the Río de La Plata Craton, including Cambrian rift-related granites of South Africa and the Sierras Australes (eastern Argentina), as main suppliers of detritus. Trace element geochemistry of recycled pyroclastic material, associated with the quartz–arenites, also suggests volcanic arc sources. The provenance of the pyroclastic material may either be the Puna–Famatina arc, located in north and central Argentina, or a hypothetical active margin further to the south. These ash layers are equivalent in age to volcanic zircons found in the Devonian Bokkeveld Group in western South Africa.The deposition of a glacial diamictite of Hirnantian age (Sierra del Volcán Diamictite) is interpreted as a member of the Balcarce Formation. Based on the stratigraphic re-location of the glacial diamictite and trace fossils, the Balcarce Formation is considered here to be Ordovician to Silurian in age. The Balcarce Formation can be correlated with similar rocks in South Africa, the Peninsula Formation, and the upper Table Mountain Group (Windhoek and Nardouw subgroups), including the Hirnantian glacial deposit of the Pakhuis Formation.  相似文献   

5.
This study reviews the Quaternary alluvial stratigraphy in three semi-arid river basins of western India i.e., lower Luni (Rajasthan), and Mahi and Sabarmati (Gujarat alluvial plains). On the basis of OSL chronologies, it is shown that the existing intra-valley lithostratigraphic correlations require a revision. The sand, gravel and mud facies are present during various times in the three basins, however, the fluvial response to climate change, and the resulting facies associations, was different in the Thar desert as compared to that at the desert margin; this makes purely lithostratigraphic correlations unviable. It is further shown that the rivers in the Thar desert were more sensitive to climate change and had small response times and geomorphic thresholds as compared to the desert-margin rivers. This is illustrated during the early OIS 1, when the Luni river in the Thar desert was dynamic and showed frequent variations in fluvial styles such as gravel bedload braided streams, sand-bed ephemeral streams and meandering streams, all followed by incision during the early Holocene. The coeval deposits in Sabarmati, however, only show a meandering, floodplain-dominated river. Late Quaternary alluvial deposits in these basins unconformably overlie some older deposits that lack any absolute chronology. Based on the facies types and their associations, and the composition and architecture of the multistoried gravel sheets in the studied sections, it is suggested that older deposits are of pre-Quaternary age. This hypothesis implies the presence of a large hiatus incorporating much of the Quaternary period in the exposed sections  相似文献   

6.
The Cerro Punta Blanca, Cerro Bayo and Cerro Punta Negra stocks, parts of the Cordillera Frontal Composite Batholith, cropping out in the Cordón del Portillo, records the Gondwana magmatic development of the Cordillera Frontal of Mendoza, in western Argentina. In this area, the San Rafael Orogenic phase, that represents the closure of the Late Carboniferous–Early Permian marine basins, begins at 284 Ma, and ceased before 276 Ma. The Cerro Punta Blanca, Cerro Bayo and Cerro Punta Negra stocks represent a post-orogenic magmatism and are equivalents to the Choiyoi Group. The Gondwana magmatic activity in the Cordón del Portillo area can be divided into two stages. The Cerro Punta Blanca stock (c.a. 276 Ma) represents an early post-orogenic, subduction-related magmatism similar to the basic-intermediate section of the Choiyoi Group (c.a. 277 Ma). The late post-orogenic second event was recorded by the Cerro Bayo (262 Ma) and Cerro Punta Negra stocks which represent a transition between subduction-related and intra-plate magmatism. This event represents the intrusive counterpart of the acidic facies of the upper section of the Choiyoi Group (c.a. 273 Ma). This extensional condition continued during the Triassic when the Cacheuta basin developed.  相似文献   

7.
The Tastil batholith (Eastern Cordillera, NW Argentina) holds relevant keys for interpreting the tectonic evolution of the Central Andes basement since it has always been interpreted as the subcrop of the Cambrian and Lower Ordovician basins in the Eastern Cordillera. However, in the Angosto de la Quesera section, the batholith intrudes sandstones underlying a fossiliferous Lower Tremadocian conglomerate containing Tastil granite pebbles. The precise assignation of the sandstones intruded by the granite to Cambrian Mesón Group or to the Uppermost Cambrian–Lower Tremadocian Santa Victoria Group is a key for refining the relationships between magmatic and sedimentary units. The ages of 526 Ma and 517 Ma (U/Pb, zircons) obtained from two facies of the batholith are coherent with the proposal of including these sandstones in the Mesón Group. However, the lithologic features and fossil content point to an affinity with the basal units of the Santa Victoria Group according to sedimentologic and stratigraphic studies ruled out by other authors. The intrusive relationships between the Tastil batholith and the Lower Paleozoic sandstones indicates the batholith is coeval with the Mesón and/or Santa Victoria groups basins instead of being its subcrop, which strongly contradicts previous proposals about basement evolution along the Lower Paleozoic margin of Gondwana. Therefore, the genesis and emplacement of the Tastil batholith must be related to the development of the Lower Paleozoic shelf basins rather than with the final stages of Puncoviscana-type basin evolution. The basement of central and northern Argentina records a wide spectrum of sedimentary, deformational, magmatic and metamorphic processes at a variety of crust levels during the Early Paleozoic. Tastil batholith emplacement and exhumation in the Eastern Cordillera represent shallower crustal expressions of the plutonic and high-T–low-P metamorphic events at deeper levels in the basement now exposed mainly in eastern Puna and Pampean Ranges.  相似文献   

8.
赵芝  迟效国  刘建峰  王铁夫  胡兆初 《岩石学报》2010,26(11):3245-3258
在内蒙古牙克石地区晚古生代岩浆岩中发现了岛弧火山岩和埃达克质花岗闪长岩。火山岩由玄武岩、安山岩、英安岩及凝灰岩组成,属于钙碱性系列,它们富集大离子亲石元素(LILE)、轻稀土元素(LREE),亏损高场强元素(HFSE)。玄武岩的SHPIMP锆石U-Pb年龄表明其形成于373.2±5.3Ma。锆石εHf(t)值为+14.67~+18.67,类似大洋中脊玄武岩(MORB)和现代俯冲带玄武岩的Hf同位素特征。上述特征说明,玄武岩很可能起源于受俯冲板片流体改造的亏损地幔楔,形成于活动大陆边缘。花岗闪长岩的结晶年龄为331.2±3.7Ma。岩石高SiO2、Sr,高Sr/Y比值,富集轻稀土元素,亏损重稀土元素和Y及高场强元素,铕异常基本不明显,具备埃达克岩的地球化学特征。锆石εHf(t)值较高(+12.78~+14.54),说明源区可能为亏损地幔或新生的玄武质下地壳。根据微量元素组成认为花岗闪长岩主要起源于晚古生代底侵的岛弧玄武-安山质下地壳。弧火山岩和埃达克质花岗闪长岩的发现表明,区内晚泥盆世-早石炭世发生过大洋板片的俯冲作用,可能与额尔古纳-兴安地块与松嫩地块的碰撞拼合密切相关。  相似文献   

9.
Heavy mineral analysis of the late Paleozoic Barakar and Raniganj sandstones from the Singrauli Gondwana sub-basin shows relative abundance of garnet, epidote, zircon, tourmaline and muscovite in the Raniganj Sandstone and epidote, garnet, rutile and tourmaline in the Barakar sandstones. Stratigraphically, the heavy mineral crops donot exhibit marked variation in their relative abundance, though garnet, epidote and muscovite form the bulk of the heavy minerals. Significant interspecific association among heavy minerals and provenance of the Barakar and Raniganj sandstones are evaluated by using σ-M multivariate model. Quantitative result suggests that the Barakar Sandstone are characterized by the basic pair match significantly more than expected due to chance alone (p value <<0.05) are garnet-tourmaline and epidote-rutile, whereas, the succeeding Raniganj sandstone are characterized by zircon-rutile and epidote-garnet. These basic pairs may be regarded as interspecific association among the heavy minerals. The basic pairs deduced from heavy mineral suites suggest that the source rocks of late Paleozoic Barakar and Raniganj sandstones have been principally derived from the acid plutonic rocks and low to high grade metasediments lying to the south and southeast of the Singrauli Gondwana sub-basin.  相似文献   

10.
The Tacuarembó Formation has yielded a fossil assemblage that includes the best known body fossils, consisting of isolated scales, teeth, spines, and molds of bones, recovered from thin and patchy bonebeds, from the Botucatu Desert, Parana Basin, South America. The remains are preserved in the sandstones widespread around the city of Tacuarembó. We propose a new formalized nomenclature for the Tacuarembó Formation, naming its “Lower” and “Upper” members as the Batoví (new name) and Rivera (new rank) members, respectively. An assemblage zone is defined for the Batoví Member (fluviolacustrine and aeolian deposits). In this unit, the freshwater hybodontid shark Priohybodus arambourgi D’Erasmo is well represented. This species was previously recorded in Late Jurassic–Early Cretaceous units of the Sahara and the southern Arabian Peninsula. Globally considered, the fossil assemblage of this member (P. arambourgi, dipnoan fishes, Ceratosaurus-like theropods, and conchostracans) is indicative of a Kimmeridgian–Tithonian age, which in combination with the stratigraphic relationships of the Tacuarembó Formation with the overlying basalts of the Arapey Formation (132 My average absolute age) implies that the latter was deposited during the Kimmeridgian–Hauterivian interval.  相似文献   

11.
The Çal Basin formed in the late Miocene as an orogen-top rift hosting terrestrial sedimentation. The initial array of alluvial fans in a half-graben basin was replaced by an axial meandering-river system during the late Tortonian. Palaeomammal taxa indicate a mid-Turolian age of the deposits and a grass-dominated steppe ecosystem. Isotopic data from pedogenic carbonates indicate a warm, semiarid to arid climate. Subhumid to humid climatic conditions prevailed in the Pliocene, with a palustrine environment and savannah-type open ecosystem, recording a regional response to the marine flooding that terminated the Messinian ‘salinity crisis’ in the Mediterranean. Pleistocene saw re-establishment of a fluvial system in the basin with the development of an open steppe ecosystem in warm, semiarid to arid climatic conditions. The sedimentary facies analysis of the basin-fill succession, combined with biostratigraphic data, render the basin a regional reference and help to refine the Neogene tectono-climatic history of SW Anatolia.  相似文献   

12.
The Middle Member of the Zorritas Formation in the Antofagasta region of northern Chile, yielded terrestrial and marine palynomorph assemblages which span the Devonian/Carboniferous boundary. The assemblages show a clear predominance of terrestrial palynomorphs with 70 miospore species, 18 marine phytoplankton species, two non-marine algae and one chitinozoan species, all coming from 15 productive levels. Palynomorphs are poorly preserved and most of them are reworked. Three palynological associations are recognized based on miospores. These are assigned to the Tournaisian–Visean, Tournaisian and probable latest Famennian. Age assignments are discussed in the frame of the spore zonal schemes established for Euramerica and western Gondwana. The stratigraphical distribution of spores allows the identification of the probable position of the Devonian/Carboniferous boundary within the Zorritas Formation. This system boundary is proposed for the first time in Palaeozoic sedimentary rocks of northern Chile. The presence of Gondwanan typical miospore species indicates affinities with this palaeocontinent even though the Tournaisian and Tournaisian–Visean miospore associations support the cosmopolitanism already suggested for the early Carboniferous flora. The significant number of reworked palynomorphs together with the sedimentological analysis of the studied sections, suggest that these deposits were severely impacted by the climatic change and major sea level fluctuations. Similar conditions were recorded in coeval western Gondwana basins.  相似文献   

13.
The Los Chocoyos Ash, having erupted from vents near the Lake Atitlán caldera, Guatemala, is perhaps the largest Quaternary silicic pyroclastic unit in Central America. It consists of an underlying H-tephra member and an overlying ash-flow member. One-hundred-and-five samples of ash from the Guatemalan Highlands and deep-sea cores in the equatorial Pacific and Gulf of Mexico were analyzed by neutron activation and/or electron microprobe. Glass shard chemistry, determined by microprobe, is useful for distinguishing several very widespread, distinct, deep-sea ash layers, but needs support from trace-element data when applied on land to distinguish between many individual eruptions from the same province. Data from this study support the correlation of the Worzel ‘D’ layer and the Los Chocoyos Ash proposed by Hahn et al. (1979) and Bowles et al. (1973). Chemical data from this study are used to correlate the Y-8 ash layer of the Gulf of Mexico with the Los Chocoyos Ash. The recognition of the Los Chocoyos Ash in the Gulf of Mexico and equatorial Pacific increases the known areal extent of the unit to more than 6 × 106 km2 and allows an age of 84,000 yr B.P. to be assigned to the formation on the basis of oxygen-isotope stratigraphy, biostratigraphy, and Pa-Th-isotope data. Trace-element data obtained from seven other ash layers in the Gulf of Mexico and the equatorial Pacific, when combined with new land-based data, should allow further correlation and dating of ash units in Central America.  相似文献   

14.
A Late Ordovician (Sandbian), Scoto‐Appalachian brachiopod fauna from the Mweelrea Formation in western Ireland confirms a location for the South Mayo Trough adjacent to the Laurentian margin, characterized at this time by a succession of marine excursions over fluviatile environments. The new, younger biostratigraphical data help to constrain the timing of late Grampian folding of this part of the South Mayo Trough. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
New SHRIMP radiogenic isotope dating on zircons in tuffs (280.8 ± 1.9 Ma) confirms the Early Permian (Artinskian) age of the uppermost section of the Tunas Formation. Tuff-rich levels in the Tunas Formation are exposed in the Ventana foldbelt of central Argentina; they are part of a deltaic to fluvial section corresponding to the late overfilled stage of the Late Paleozoic Sauce Grande foreland basin. Recent SHRIMP dating of zircons from the basal Choiyoi volcanics exposed in western Argentina yielded an age of 281.4 ± 2.5 Ma (Rocha-Campos et al., 2011). The new data for the Tunas tuffs suggest that the volcanism present in the Sauce Grande basin can be considered as the distal equivalent of the earliest episodes of the Choiyoi volcanism of western Argentina. From the palaeoclimatic viewpoint the new Tunas SHRIMP age confirms that by early Artinskian glacial conditions ceased in the Sauce Grande basin and, probably, in adajacent basins in western Gondwana.  相似文献   

16.
对湘东板杉铺岩体、宏夏桥岩体和赣西张佳坊岩体、丰顶山岩体以及山庄岩体共5个早古生代晚期花岗岩体的LA—ICPMS锆石U—Pb年龄测定结果表明,采自上述5个岩体的代表性样品分别给出了(418±2)Ma(板杉铺岩体)、(432±6)Ma(宏夏桥岩体)、(440±2)Ma(张佳坊岩体)、(402±2)Ma(丰顶山岩体)和(424±3)Ma(山庄岩体)的锆石u—Ph谐和年龄,代表了区内早古生代晚期花岗岩的形成时代。结合其他的年代学和地质资料,认为华南早古生代晚期花岗岩空间上呈面状展布,时代上主体集中在400~440Ma间,且区内早古生代晚期片麻状花岗岩和块状花岗岩的形成时代无明显差异,动力学上倾向于认为华南内部加里东事件很可能不是洋陆俯冲作用的结果。  相似文献   

17.
Basal part of the Gondwana Supergroup represented by Talchir and Karharbari Formations (Permo-Carboniferous) records an abrupt change-over from glacio-marine to terrestrial fluviolacustrine depositional environment. The contact between the two is an unconformity. Facies analysis of the glacio-marine Talchir Formation reveals that basal glaciogenic and reworked glaciogenic sediments are buried under storm influenced inner and outer shelf sediments. Facies associations of the Karharbari Formation suggest deposition as fluvio-lacustrine deposits in fault-controlled troughs. An attempt has been made in this paper to explain the sedimentation pattern in Talchir and Karharbari basins, and the abrupt change-over from glacio-marine to terrestrial fluviolacustrine depositional environment in terms of glacio-isostacy.  相似文献   

18.
Amiid remains from the Upper Cretaceous (Turonian-Santonian) Adamantina Formation, Bauru Basin, Southeastern Brazil are described. The material is known only from fragmented isolated jaw bones (maxilla and dentary), a vertebral centrum, and isolated teeth and represents the first halecomorph described from this stratigraphical unit. Characters of the maxilla and the shape of the teeth, permit referral to the subfamily Vidalaminae. The Adamantina material differs from material described from the slightly younger Marília Formation (Maastrichthian) of the same Bauru Basin, by the presence of longitudinal ridges on the surface of the maxilla as well as by tooth sockets of equal size. These two records are the unique indisputable occurrences of freshwater vidalamins and confirm the presence of this clade within the incipient Neotropical ichthyofauna.  相似文献   

19.
The Karharbari and Barakar coal measures of Giridih and Saharjuri basins of Bihar, eastern India, comprise an interbedded assemblage of sandstone, shale and coal in variable abundance. The lithofacies composition records a progressive decrease in sandstone and enrichment of shale and coal from Karharbari up to Barakar. Application of first-order embedded Markov-chain statistics to subsurface data of Karharbari (52 borehole logs) and Barakar (10 borehole logs) reveals that deposition in both the coal measures followed a Markovian mechanism with variable probability, to yield a sequence of upward transition from sandstone through shale to coal. The repetitive fining-upward cycles are asymmetrical, i.e. sandstone → shale → coal → sandstone in the case of Karharbari, but symmetrical as sandstone → shale → coal → shale in Barakar.The abundance of sandstone and the asymmetrical nature of Karharbari cycles are attributed to abrupt shifting of channel bars in low-sinuosity anabranching streams. By contrast, the subequal amount of sandstone, shale and coal forming symmetrical cycles in the overlying Barakar Formation is due perhaps to a slow and gradual shift of the stream channels over and across the adjacent subenvironments of the flood plain.  相似文献   

20.
Cordieritites and highly peraluminous granites within the ElPilón granite complex, Sierras Pampeanas, Argentina,were emplaced during a medium-P, high-T metamorphic event duringthe initial decompression of a Cambrian orogen along the southwesternmargin of Gondwana. Very fresh orbicular and massive cordierititebodies with up to 90% cordieritite are genetically associatedwith a cordierite monzogranite pluton and a larger body of porphyriticgranodiorite. The petrogenesis of this association has beenstudied using petrographical, mineralogical, thermobarometric,geochemical, geochronological and isotope methods. The graniticmagmas were formed by anatexis of mid-crustal metamorphic rocksformed earlier in the Pampean orogeny. The cordieritites appearat the top of feeder conduits that connected the source regionlocated at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号