首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The South East Sayan area, W of the Lake Baikal is subjected to a very complex tectonic setting where the extensional stress field of the Baikal Rift System meets the compressional stress field generated by the India–Asia collision further south. Using satellite images, aerial photographs, SRTM DEM, field mapping of geomorphological structures, and published neotectonics and geological data we show that most of the relief in the SE Sayan initiated during Late Pliocene–Pleistocene through compressive reactivation of inherited structures. By Late Quaternary, clockwise rotation of the compressive field generated strike–slip faulting and local, secondary extension still within a general compressional stress field. We demonstrate that the formation of the small-scale extensional basins within the East Sayan range is not linked to general the extension in the Baikal Rift System nor to a possible asthenospheric plume acting at the base of the crust but rather to the rotation of small rigid tectonic blocks driven by the compression.  相似文献   

2.
The paper is concerned with the kinematics of the major faults, their pattern, and the time of occurrence of compression and extension deformations in the southeast of the Eastern Sayan. The geometry of the mountain ranges and the kinematics of the major faults exhibit northeast-oriented compression responsible for the current processes of relief formation, which corresponds to the direction of the vector of deformations associated with the Indo-Asian collision. The results obtained thus far may be indicative of the remote influence of collision on the orogenic activity and transpressional deformations in the Eastern Sayan since the end of the Miocene. Morphotectonic analysis has shown that the areas of Quaternary extension-related deformations in the Eastern Sayan are not a response to active rifting in the Baikal Rift Zone. The position and geometry of the subsided blocks and magma ruptures point to the fact that they form locally as extension structural elements near the strike-slip faults. The strike-slip and thrust faults are widespread and play the leading role in the development of the southeastern part of the Eastern Sayan.  相似文献   

3.
From a synthesis of data on volcanic evolution,movement of the lithosphere,and mantle velocities in the Baikal-Mongolian region,we propose a comprehensive model for deep dynamics of Asia that assumes an important role of the Gobi,Baikal,and North Transbaikal transition-layer melting anomalies.This layer was distorted by lower-mantle fluxes at the beginning of the latest geodynamic stage(i.e.in the early late Cretaceous) due to avalanches of slab material that were stagnated beneath the closed fragments of the Solonker,Ural-Mongolian paleoceans and Mongol-Okhotsk Gulf of Paleo-Pacific.At the latest geodynamic stage,Asia was involved in east-southeast movement,and the Pacific plate moved in the opposite direction with subduction under Asia.The weakened upper mantle region of the Gobi melting anomaly provided a counterflow connected with rollback in the Japan Sea area.These dynamics resulted in the formation of the Honshu-Korea flexure of the Pacific slab.A similar weakened upper mantle region of the North Transbaikal melting anomaly was associated with the formation of the Hokkaido-Amur flexure of the Pacific slab,formed due to progressive pull-down of the slab material into the transition layer in the direction of the Pacific plate and Asia convergence.The early—middle Miocene structural reorganization of the mantle processes in Asia resulted in the development of upper mantle low-velocity domains associated with the development of rifts and orogens.We propose that extension at the Baikal Rift was caused by deviator flowing mantle material,initiated under the moving lithosphere in the Baikal melting anomaly.Contraction at the Hangay orogen was created by facilitation of the tectonic stress transfer from the Indo-Asian interaction zone due to the low-viscosity mantle in the Gobi melting anomaly.  相似文献   

4.
The Cenozoic paleostress state of the Earth’s crust at the southwestern flank of the Baikal Rift System (Tunka system of basins) is reconstructed. With allowance for known facts about the geologic history of the Tunka system of basins, the evolution of the stress field and its formation conditions are established by comparison of the obtained reconstructions, including the dated stress fields, with the Pleistocene-Holocene deformations in active fault zones and the present-day stress state (seismotectonic deformations calculated from the focal mechanisms of earthquakes). The opening of basins in the NW-SE direction was proceeding in the transtensional regime from the Oligocene to the late Miocene or early Pliocene. At the early-late Pliocene boundary, this process was followed by the transpressional regime with compression in the NW direction. In the late Pliocene, the situation at the southwestern flank changed drastically. Since that time, deformation has occurred in the transpressional regime and the compression axis has been oriented in the NE direction. The alternative models of the evolution of the Tunka system of basins—oblique extension, the transform fracture zone, or a pull-apart system—are considered. Both models are combined in the framework of the suggested stress-field reconstruction. The oblique extension (transtension) was related to the early stages of evolution, whereas a possibility of forming pull-apart basin was existent at the late stages.  相似文献   

5.
Tectonic models for the Late Cretaceous/Tertiary evolution of the West Antarctic Rift System range from hundreds of kilometres of extension to negligible strike-slip displacement and are based on a variety of observations, as well as kinematic and geodynamic models. Most data constraining these models originate from the Ross Sea/Adare Trough area and the Transantarctic Mountains. We use a new Antarctic continental crustal-thinning grid, combined with a revised plate-kinematic model based on East Antarctic – Australia – Pacific – West Antarctic plate circuit closure, to trace the geometry and extensional style of the Eocene – Oligocene West Antarctic Rift from the Ross Sea to the South Shetland Trench. The combined data suggest that from chron 21 (48 Ma) to chron 8 (26 Ma), the West Antarctic Rift System was characterised by extension in the west to dextral strike-slip in the east, where it was connected to the Pacific – Phoenix – East Antarctic triple junction via the Byrd Subglacial Basin and the Bentley Subglacial Trench, interpreted as pullapart basins. Seismic-reflection profiles crossing the De Gerlache Gravity Anomaly, a tectonic scar from a former spreading ridge jump in the Bellingshausen Sea, suggest Late Tertiary reactivation in a dextral strike-slip mode. This is supported by seismic-reflection profiles crossing the De Gerlache Gravity Anomaly in the Bellingshausen Sea, which show incised narrow sediment troughs and vertical faults indicating strike-slip movement along a north – south direction. Using pre-48 Ma plate circuit closure, we test the hypothesis that the Lord Howe Rise was attached to the Pacific Plate during the opening of the Tasman Sea. We show that this plate geometry may be plausible at least between 74 and 48 Ma, but further work especially on Australian – Antarctic relative plate motions is required to test this hypothesis.  相似文献   

6.
The Baikal system of rift valleys   总被引:1,自引:0,他引:1  
The Baikal system of rift valleys has no evident structural connections with the World Rift System. The peculiar features of its structure, morphology and volcanicity reflect this isolation. The spatial position and major structural features of the system are determined where the central segment (the South Baikal depression) is confined to the junction of two major lithospheric plates, the Precambrian Siberian platform and the heterogenous folded framework of Sayan—Baikal. The contrasting structures and thermodynamic conditions of these two plates, and the deep nature of the suture zone developed between them, have been responsible for the location of crustal extension and proto-rift formation within the Baikal depression proper, first initiated not later than Eocene and then propagating to zones both west and northeastwards.  相似文献   

7.
Petit 《地学学报》1998,10(3):160-169
To better understand how active deformation localizes within a continental plate in response to extensional and transtensional tectonics, a combined analysis of high-quality gravity (Bouguer anomaly) and seismicity data is presented consisting of about 35000 earthquakes recorded in the Baikal Rift Zone. This approach allows imaging of deformation patterns from the surface down to the Moho. A comparison is made with heat flow variations in order to assess the importance of lithospheric rheology in the style of extensional deformation. Three different rift sectors can be identified. The southwestern rift sector is characterized by strong gravity and topography contrasts marked by two major crustal faults and diffuse seismicity. Heat flow shows locally elevated values, correlated with recent volcanism and negative seismic P-velocity anomalies. Based on earthquake fault plane solutions and on previous stress field inversions, it is proposed that strain decoupling may occur in this area in response to wrench-compressional stress regime imposed by the India–Asia collision. The central sector is characterized by two major seismic belts; the southernmost one corresponds to a single, steeply dipping fault accommodating oblique extension; in the centre of lake Baikal, a second seismic belt is associated with several dip-slip faults and subcrustal thinning at the rift axis in response to orthogonal extension. The northern rift sector is characterized by a wide, low Bouguer anomaly which corresponds to a broad, high topographic dome and seismic belts and swarms. This topography can be explained by lithospheric buoyancy forces possibly linked to anomalous upper mantle. At a more detailed scale, no clear correlation appears between the surficial fault pattern and the gravity signal. As in other continental rifts, it appears that the lithospheric rheology influences extensional basins morphology. However, in the Baikal rift, the inherited structural fabric combined with stress field variations results in oblique rifting tectonics which seem to control the geometry of southern and northeastern rift basins.  相似文献   

8.
A. S. Baluev 《Geotectonics》2006,40(3):183-196
The nearly parallel northwest-trending Onega-Kandalaksha, Kerets-Leshukonsky, and Barents paleorift zones located in the northeastern part of the East European Platform are interpreted as a common structural assemblage that was formed in the Middle-Late Riphean as a result of horizontal extension of the continental margin. Therefore, it is reasonable to combine these paleorift structural features into the common White Sea Rift System instead of subdividing them into two or more systems as done previously. The White Sea Rift System originated owing to the breakup of the ancient Paleopangea supercontinent 1300–1240 Ma ago. The latter event occurred as a result of the divergence of the Baltia and Laurentia continental plates that most probably was caused by mantle spreading within the hot equatorial belt of the Earth. The diffuse rifting of that time occurred in the form of near-parallel rifts developing progressively from the inner part of the continental plate toward its margin. A pericratonic sedimentary basin eventually formed at the passive margin of Baltia as a system of roughly parallel rift zones. The geologic and geophysical data show that the passive margin of the East European Platform formed in the Riphean, a phenomenon that corresponds with a model of large-scale extension of the lithosphere after the stage of early ocean-floor spreading. In the course of this process, the brittle upper crust was detached from the ductile lower crust. The geodynamic regime of the Riphean passive margin of the East European Platform probably was similar to the regime of the present-day Atlantic-type passive margins. The White Sea Rift System differs from the transverse Mid-Russian Paleorift System both in origin and age. The Mid-Russian Paleorift System is considered to have formed in the Late Riphean as a result of transtension along a mobile zone in the ancient basement. The lithosphere of northeastern Fennoscandia has experienced horizontal extension since the Middle Riphean, a phenomenon that is closely related to the evolution of the White Sea Rift System, i.e., to the formation of the passive margin of the Baltia continent.  相似文献   

9.
Previous dynamic models of the Baikal Rift Zone (BRZ) are mostly two-dimensional on vertical plane. In this study, a numerical model of neotectonics in the region on map view was constructed using the adapted PLATES program. The present work is an attempt to test different mechanisms for opening Baikal Rift by comparing the modelled and observed stress and strain rate fields. The following rifting scenarios were tested: (1) pure northwest–southeast extension, (2) pure northeast–southwest compression, (3) oblique rift opening and (4) combined northwest–southeast extension and northeast–southwest compression. The models are calibrated using geologically and GPS-derived strain rates and stress-tensor determinations from fault-slip data and earthquake focal mechanisms. The most successful model requires a combination of NE–SW compression and orthogonal extension. The model results indicate that the present extensional regime in BRZ can be explained by combining the India plate indentation northward into Eurasia, east–west convergence between the North America and Eurasia plates and southeastward extrusion of the Amur plate in northeastern Asia. Predicted fault-slip rates for the best-fit model are consistent with the observed Holocene fault-slip rates in the Lake Baikal region. The generally accepted rotation of the Amur and Mongolia microplates are used as independent constraints for the choice of the best-fit model. These data correlate well with the predicted direction of rotation in our best model.  相似文献   

10.
The stress fields in the Tunka Rift at the southwestern flank of the Baikal Rift Zone are reconstructed and analyzed on the basis of a detailed study of fracturing. The variation of these fields is of a systematic character and is caused by a complex morphological and fault-block structure of the studied territory. The rift was formed under conditions of oblique (relative to its axis) regional NW-SE extension against the background of three ancient tectonic boundaries (Sayan, Baikal, and Tuva-Mongolian) oriented in different directions. Such a geological history resulted in the development of several en echelon arranged local basins and interbasinal uplifted blocks, the strike-slip component of faulting, and the mosaic distribution of various stress fields with variable orientation of their principal vectors. The opening of basins was promoted by stress fields of a lower hierarchical rank with a near-meridional tension axis. The stress field in the western Tunka Rift near the Mondy and Turan basins is substantially complicated because the transform movements, which are responsible for the opening of the N-S-trending rift basins in Mongolia, become important as Lake Hövsgöl is approached. It is concluded that, for the most part, the Tunka Rift has not undergone multistage variation of its stress state since the Oligocene, the exception being a compression phase in the late Miocene and early Pliocene, which could be related to continental collision of the Eurasian and Indian plates. Later on, the Tunka Rift continued its tectonic evolution in the transtensional regime.  相似文献   

11.
Structural studies of the Barmer Basin in Rajasthan, northwest India, demonstrate the important effect that pre-existing faults can have on the geometries of evolving fault systems at both the outcrop and basin-scale. Outcrop exposures on opposing rift margins reveal two distinct, non-coaxial extensional events. On the eastern rift margin northwest–southeast extension was accommodated on southwest- and west-striking faults that form a complex, zig-zag fault network. On the western rift margin northeast–southwest extension was accommodated on northwest-striking faults that form classical extensional geometries.Combining these outcrop studies with subsurface interpretations demonstrates that northwest–southeast extension preceded northeast–southwest extension. Structures active during the early, previously unrecognised extensional event were variably incorporated into the evolving fault systems during the second. In the study area, an inherited rift-oblique fault transferred extension from the rift margin to a mid-rift fault, rather than linking rift margin fault systems directly. The resultant rift margin accommodation structure has important implications for early sediment routing and depocentre evolution, as well as wider reaching implications for the evolution of the rift basin and West Indian Rift System. The discovery of early rifting in the Barmer Basin supports that extension along the West Indian Rift System was long-lived, multi-event, and likely resulted from far-field plate reorganisations.  相似文献   

12.
The geological structure and tectonophysics of the Gusinoozersky Basin—a tectonotype of Mesozoic depressions in the western Transbaikal region—is discussed. New maps of the fault-block structure and state of stress in the Earth’s crust of the studied territory are presented. It is established that the Gusinoozersky Basin was formed in a transtensional regime with the leading role of extension oriented in the NW-SE direction. The transtensional conditions were caused by paths of regional tension stresses oriented obliquely to the axial line of the basin, which created a relatively small right-lateral strike-slip component of separation (in comparison with normal faulting) along the NE-trending master tectonic lines. The widespread shear stress tensors of the second order with respect to extension are related to inhomogeneities in the Earth’s crust, including those that are arising during displacement of blocks along normal faults. Folding at the basin-range boundary was brought about by gravity effects of normal faulting. The faults and blocks in the Gusinoozersky Basin remained active in the Neogene and Quaternary; however, it is suggested that their reactivation was a response to tectonic processes that occurred in the adjacent Baikal Rift Zone rather than to the effect of a local mantle source.  相似文献   

13.
The motion of lithospheric blocks was analyzed in the junction zone between the Eurasian Plate and its surrounding structures. Its present-day stage was considered using GPS and seismologic data. Models of the movement of a rigid plate are considered for Eurasia. A model of Eurasia (northern part of Asia) was used to determine the rotation parameters of its southern periphery (Amur Plate) based on GPS data for the Far East (Sikhote Alin profile), and Transbaikal regions are shown as an example. A model of the Amur Plate was used to illustrate the behavior of the extension zone on its western boundary represented by the Lake Baikal depression during the Kultuk earthquake (M = 6.3, August, 27, 2008). Paleomagnetic data made it possible to determine the rotation pole of the Siberian Craton relative to its surrounding folded structures during the Mesozoic and to estimate its kinematic parameters. The permanent position of the rotation pole in the relative coordinate system since the terminal Paleozoic until the Recent indicates a constant rotation velocity of the Siberian domain within the Eurasian Plate structure.  相似文献   

14.
Upper Cretaceous and Cenozoic formations of the western Transbaikal and southeastern Baikal regions are considered. Molasses and molassoids (molasse-type sediments) were included into these formations in previous works. In our opinion, the following formations are developed in these regions: plain fan formation divided into the terrigenous (Upper Cretaceous) and coaliferous (Upper Oligocene-Lower Pliocene) subformations; plain fine-clastic formation (Paleogene, except the Upper Oligocene); and orogenic molasse formation (Upper Pliocene-Holocene) divided into the lower red-colored and upper gray-colored subformations. Main textural features of these formations are considered. Paleogeographic and paleotectonic settings of their accumulation are reconstructed. It is shown that coarse-clastic sediments of fan formations accumulated in grabens among ancient denudation plains due to the destruction of rocks in near-wall benches. These plains probably hosted in some areas remnants of the mountainous relief. Origination and development of the Baikal rift zone was the main geological event in the Baikal region during the Late Cretaceous and Cenozoic. Based on study of the southeastern Baikal region with the thickest and most representative Cenozoic sections, the prerifting and rifting stages of this zone and correlative events in the adjacent (relatively stable) areas of the western Transbaikal region are characterized.  相似文献   

15.
Comprehensive analysis of the parameters characterizing contemporary and neotectonic deformations of the Earth’s crust and upper mantle developed in the Mongolia-Siberia area is presented. The orientation of the axes of horizontal deformation in the geodetic network from the data of GPS geodesy is accepted as an indicator of current deformations at the Earth’s surface. At the level of the middle crust, this is the orientation of the principal axes of the stress-tensors calculated from the mechanisms of earthquake sources. The orientation of the axes of stress-tensors reconstructed on the basis of structural data is accepted as an indicator of Late Cenozoic deformations in the upper crust. Data on seismic anisotropy of the upper mantle derived from published sources on the results of splitting of shear waves from remote earthquakes serve as indicators of deformation in the mantle. It is shown that the direction of extension (minimum compression) in the studied region coincides with the direction of anisotropy of the upper mantle, the median value of which is 310–320° NW. Seismic anisotropy is interpreted as the ordered orientation of olivine crystals induced by strong deformation owing to the flow of mantle matter. The observed mechanical coupling of the crust and upper mantle of the Mongolia-Siberia mobile area shows that the lithospheric mantle participated in the formation of neotectonic structural elements and makes it possible to ascertain the main processes determining the Late Cenozoic tectogenesis in this territory. One of the main mechanisms driving neotectonic and contemporary deformations in the eastern part of the Mongolia-Siberia area is the long-living and large-scale flow of the upper mantle matter from the northwest to the southeast, which induces both the movement of the northern part of the continent as a whole and the divergence of North Eurasia and the Amur Plate with the formation of the Baikal Rift System. In the western part of the region, deformation of the lithosphere is related to collisional compression, while in the central part, it is due to the dynamic interaction of these two large-scale processes.  相似文献   

16.
The offshore branch of the East African Rift System (EARS) has developed during Late Cenozoic time along the eastern Africa continental margin. While Neogene–Pleistocene extensional tectonic deformation has been evidenced along the northern segment of the Davie Ridge, the spatial extent of deformation further south remains poorly documented. Based on recent and various oceanographic datasets (bathymetric surveys, dredge samples and seismic profiles), our study highlights active normal faulting, modern east–west extensional tectonic deformation and Late Cenozoic alkaline volcanism at the Sakalaves Seamounts (18°S, Davie Ridge) that seem tightly linked to the offshore EARS development. In parallel, rift‐related tectonic subsidence appears responsible for the drowning of the Sakalaves Miocene shallow‐water carbonate platform. Our findings bring new insights regarding the development of the EARS offshore branch and support recent kinematic models proposing the existence of a plate boundary across the Mozambique Channel.  相似文献   

17.
This paper reviews and integrates new results on: (1) the Late Paleozoic and Mesozoic evolution of Central Asia; (2) Cenozoic mountain building and intramontane basin formation in the Altay-Sayan area; (3) comparison of the tectonic evolutionary paths of the Altay, Baikal, and Tien Shan regions; (4) Cenozoic tectonics and mantle-plume magmatic activity; and (5) the geodynamics and tectonic evolution of Central Asia as a function of the India-Himalaya collision. It provides a new and more complete scenario for the formation of the Central Asian intracontinental mountain belt, compared with the generally accepted model of the “indentation” of the Indian plate into the Eurasian plate. The new model is based on the hypothesis of a complex interaction of lithospheric plates and mantle-plume magmatism. Compilation and comparison of new and published structural, geomorphological, paleomagnetic, isotopic, fission-track, and plume magmatism data from the Baikal area, the Altay, Mongolia, Tien Shan, Pamir, and Tibet show that the main stages of their orogenic evolution and basin sedimentation are closely related in time and space. After a long period of tectonic quiescence and peneplanation, Central and Southeast Asia were strongly affected by India-Eurasia collisional tectonics. During the first collisional stage (60 to 35 Ma), a first series of high mountains formed in the Himalayas, southern Tibet, and, possibly, the southern Tien Shan. Eocene deposits, younging northward, formed coevally with the orogeny in the near-Himalaya trough, Tarim, Tajik depression, and Fergana Basin. During postcollisional convergence, new depressions formed over wide territories, from the Tarim to Baikal and Altay areas. However, intensification of the deformation and uplift later were propagated northward, with development of the Qinghai-Tibetan Plateau (20 to 12 Ma), Tien Shan mountains (18 to 11 Ma), Junggar mountains and depression (8 to 5 Ma), and Altay, Baikal, and Transbaikal depressions and mountains (3 Ma).

Northward propagation of the deformation front from the Himalayan collision zone is suggested by regular northward younging of mountains and intramontane basins. Evidence of this includes: (1) India thrusting under Tibet, resulting in the rotation of the latter (60 to 35 Ma); (2) subsidence of the Tarim ramp depression, the rise of the Tien Shan, and the migration of both the Tien Shan and Tarim to the northwest along the Junggar and Talas-Fergana strike-slip faults (35 to 8 Ma); (3) subsidence of the Junggar plate, counterclockwise rotation of the Mongolian and Amur plates (8 to 3 Ma); and (4) rise of the Altay, Hangai, and Transbaikal areas, clockwise rotation of the Amur plate, and rapid opening of the Baikal rift. There is a clear relation between tectonics (rotation of the Tibet and Amur microplates, displacement along plate boundaries) and plume magmatism. The effects of the latter on moving plates are deduced from migration of the Tien Shan volcanic area toward the Tibet area and of the South Mongolian volcanic migration toward the Hangai area. Magmatism and tectonic processes became synchronous just after India collided with the South Himalaya area (60 Ma) and the Pamirs (35 Ma). Plumes beneath the Asian plate are considered to be responsible for the rotation of the microplates and for the northward propagation of tectonic activity from the zone of collision. Mantle magmatism is lacking beneath the Altay. In this case, mountain-building processes and basin-formation mechanisms likely are related to external sources of deformation originating from the India-Pamir convergence. In addition, they also may be related to the general translation and rotation of microplates.  相似文献   

18.
The Kichera zone of the Baikal–Muya Belt consists of alternating tectonic plates with rocks of different metamorphic facies. Garnet–cordierite–sillimanite gneiss from the tectonic fragment in granite–gneiss of the Baikal massif with an age of 755 ± 15 Ma from the Goremyka plate and two-pyroxene schist of the granulite complex with an age of 617 ± 5 Ma from the Boguchan plate were studied. Thermobarometric studies of these key metamorphic rocks were carried out using the avPT (THERMOCALC) and TWEEQU (TWQ 2.01) methods. The P–T parameters estimated for the cordierite?sillimanite gneiss of the Goremyka plate correspond to the boundary between the amphibolite and granulite facies. Granulites of the Boguchan plate belong to the HT–LP type. Exhumation of metamorphic rocks could be caused by extension upon the evolution of the Late Baikal rifting.  相似文献   

19.
Based on multiyear measurements of present-day motions in the central area of the Baikal rift system, new data on the kinematics of horizontal motions, relative horizontal deformation rates, and rotation velocities in the area of junction of the South Baikal, North Baikal, and Barguzin rift basins have been obtained. This area is an intricate structure with two transfer zones: Ol’khon–Svyatoi Nos and Ust’-Barguzin.It is shown that crustal blocks are moving southeastward, normally to the structures of transfer zones and at an acute angle to the Baikal Rift strike, which corresponds to the right-lateral strike-slip extensional faulting along the major structure. The average horizontal velocities increase from 3.0 mm yr–1 in the northern South Baikal basin to 6.5 mm yr–1 in the Barguzin basin. The elongation axes prevailing in the study region are mainly of NW–SE direction. The areas of intense deformations are confined to structures with high seismic activity in the South Baikal and, partly, Barguzin basins. This confirms the existence of a present-day zone of the Earth’s crust destruction in the Baikal rift system, which is the most likely source of strong earthquakes in the future. Two zones with rotations in opposite directions are recognized in the rotation velocity field. Clockwise rotation is typical of structures of N–NE strike (Maloe More basin, southern North Baikal basin, Barguzin Ridge rise). Counterclockwise rotation is determined for NE-striking structures (northern South Baikal basin, southern Barguzin basin). In general, the obtained data show an intricate pattern of present-day horizontal dislocations and deformations in the area of junction of NE- and N–NE-striking rift structures. This suggests left- and right-lateral strike-slip faults, respectively, within them.  相似文献   

20.
The results of geological, structural, tectonic, and geoelectric studies of the dry basins in the Baikal Rift Zone and western Transbaikalia, combined under the term Baikal region, are integrated. Deformations of the Cenozoic sediments related to pulsing and creeping tectonic processes are classified. The efficiency of mapping of the fault-block structure of the territories overlapped by loose and poorly cemented sediments is shown. The faults mapped at the ground surface within the basins are correlated with the deep structure of the sedimentary fill and the surface of the crystalline basement, where they are expressed in warping and zones of low electric resistance. It is established that the kinematics of the faults actively developing in the Late Cenozoic testifies to the relatively stable regional stress field during the Late Pliocene and Quaternary over the entire Baikal region, where the NW-SE-trending extension was predominant. At the local level, the stress field of the uppermost Earth’s crust is mosaic and controlled by variable orientation of the principal stress axes with the prevalence of extension. The integrated tectonophysical model of the Mesozoic and Cenozoic rift basin is primarily characterized by the occurrence of mountain thresholds, asymmetric morphostructure, and block-fault structure of the sedimentary beds and upper part of the crystalline basement. The geological evolution of the Baikal region from the Jurassic to Recent is determined by alternation of long (20–115 Ma) epochs of extension and relatively short (5.3–3.0 Ma) stages of compression. The basins of the Baikal Rift System and western Transbaikalia are derivatives of the same geodynamic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号