首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Analysis of earthquake focal mechanisms allows division of the India‐Asia collision into kinematic domains that strongly correlate with topography. These kinematic domains indicate strain partitioning dominated by oblique slip deformation. The Kunlun and south Tibetan fault systems mark discontinuities in the strain field and bound the high, flat topography of the plateau which deforms by transtension. The northern and southern margins of Tibet deform by transpression or contraction and are topographically steep. Correlations between seismicity and topography are due to Mohr–Coulomb wedge mechanics at the northern and southern plateau margins which produce naturally steep surface slopes, whereas the flat interior and eastern margin of the Tibetan Plateau is underlain by viscous crust which supports subdued topography further muted by Cenozoic basin fill. These data indicate that the long wavelength topography of the India‐Asia collision is controlled by seismically caused surface displacements which are linked to deep crustal deformation mechanics.  相似文献   

2.
The main features of the volcanic and nonvolcanic passive margins of the North and Central Atlantic are considered. The margins are compared using rather well-studied reference tectonotypes as examples. The conjugate margins of the Norwegian-Greenland region and the margins of West Iberia and Newfoundland are chosen as tectonotypes of volcanic and nonvolcanic margins, respectively. The structural and magmatic features of the margins and their preceding history are discussed. A complex of interrelated attributes is shown for each tectonotype. The Norwegian-Greenland region close to the Iceland plume is distinguished by narrow zones of stretched continental crust, rapid localization of stretching with breakup of the continent, a high rate of subsequent spreading, and intense magmatism with the formation of a thick new crust at the margin and the adjacent oceanic zone. The Iberia-Newfoundland region, remote from the plumes, is characterized by wide zones of stretched continental crust, long-term and diachronous prebreakup extension propagating northward, extremely restricted mantle melting during rifting and initial spreading, and frequent occurrence of ancient crustal complexes and serpentinized mantle rocks at the margin. Crustal faults and a thin tectonized oceanic crust appear along the margin under conditions of slow spreading. A model of hot and fast spreading with a high degree of melting in the mantle is applicable to the Norwegian-Greenland region, whereas a model of cold and slow amagmatic rifting with a long pre-breakup stretching and thinning of the lithosphere is appropriate to the Iberia-Newfoundland margins. The differences in the development of the margins is determined by the interaction of many factors: deep temperature, rheology of the underlying lithosphere, heterogeneities in the previously formed crust, and the duration and rate of stretching. All of these factors can be related to the effect of deep plumes and propagation of the extension zone toward the segments of the cold Atlantic lithosphere. Both types of margins also reveal similar features, in particular asymmetry. It is suggested that the rotation forces superimposed on the general tectonomagmatic pattern controlled by plumes could have been the cause of structural asymmetry.  相似文献   

3.
Two-dimensional thermal-mechanical numerical models show that Rayleigh-Taylor-type (RT) gravitational removal of high-density lithosphere may produce significant surface deformation (vertical deflection 〉1000 m) in the interior of a continental plate.A reasonable range of crustal strengths and thicknesses,representing a variation from a stable continental interior to a hot orogen with a thick crust,is examined to study crustal deformation and the surface deflection in response to an RT instability.In general,three types of surface deflection are observed during the RT drip event:(1) subsidence and negative topography; (2) uplift and positive topography; (3) subsidence followed by uplift and inverted topography.One key factor that determines the surface expression is the crustal thickness.Models with a thin crust mainly show subsidence and develop a basin.In the thick crust models,surface expressions are more variable,depending on the crustal strength and depth of highdensity anomaly.With weak crust and a deep high-density anomaly,the RT drip is decoupled from the overlying crust,and the surface exhibits uplift or little deflection,as the RT drip induces contraction and thickening of the overlying crust.In contrast,with a strong crust and shallow anomaly,the surface is more strongly coupled with the drip and undergoes subsidence,followed by uplift.  相似文献   

4.
On the eastern margin of the Tibetan Plateau, the Anninghe, Zemuhe and Xiaojiang faults comprise a N–S-trending active left-lateral fault system extending more than 700 km. The northernmost Anninghe Fault extends for ∼200 km, consisting of two sub-parallel N–S trending strands. Along the western strand, the fault traces occur almost strictly along the broad and flat Anninghe valley, displacing high terraces, alluvial fans and tributary channels of the Anninghe River. The eastern strand, on the other hand, cuts through the steep mountain slopes, with prominent rectilinear upslope-facing scarps and shutter ridges against pounded fluvial sediments from the east. The displacements along the eastern strand are much larger than that along the western strand, indicating the eastern strand is the major fault absorbing the E–W shortening. This study demonstrates that the Anninghe Fault is now acting as a relief-building boundary fault and absorbing the E–W compression under the eastwards motion of the Tibetan Plateau. Accordingly, the Anninghe region is a topographic transition area from steep relief to low gradient topography. The variation in topographic gradient is consistent with the differing tectonic regime between southern and northern parts of the Tibetan Plateau.  相似文献   

5.
Progress in the Study of Deep Profiles of Tibet and the Himalayas (INDEPTH)   总被引:5,自引:0,他引:5  
This paper introduces 8 major discoveries and new understandings with regard to the deep structure and tectonics of the Himalayas and Tibetan Plateau obtained in Project INDEPTH, They are mainly as follows. (1) The upper crust, lower crust and mantle lithosphere beneath the blocks of the plateau form a "sandwich" structure with a relatively rigid-brittle upper crust, a visco-plastic lower crust and a relatively rigid-ductile mantle lithosphere. This structure is completely different from that of monotonous, cold and more rigid oceanic plates. (2) In the process of north-directed collision-compression of the Indian subcontinent, the upper crust was attached to the foreland in the form of a gigantic foreland accretionary wedge. The interior of the accretionary wedge thickened in such tectonic manners as large-scale thrusting, backthrusting and folding, and magmatic masses and partially molten masses participated in the crustal thickening. Between the upper crust and lower crust lies a large detachment (e.g  相似文献   

6.
Apatite fission track analysis of samples from the shoulder (marginal ridge) of the Côte d'Ivoire-Ghana transform continental margin reveal a cooling of the margin between 85 and 65 Ma for the central and eastern parts of the ridge. All samples were heated in situ during sedimentary burial with a temperature >120 °C, except for two samples located in the eastern part which were heated between 105 and 120 °C. For the first time, age/depth diagram along a transform margin shows a shape involving erosion starting at the bottom of the continental slope, then stepping backwards towards the edge of the slope. This retrogressive erosion can result from the deepening of the lithospheric plate sliding along the transform margin, from thick continental crust to thin continental crust, and finally to oceanic crust. This process could be at the origin of the shoulder uplift by flexural response to the important crustal discharge (>2 km).  相似文献   

7.
Non‐volcanic continental passive margins have traditionally been considered to be tectonically and magmatically inactive once continental breakup has occurred and seafloor spreading has commenced. We use ambient‐noise tomography to constrain Rayleigh‐wave phase‐velocity maps beneath the eastern Gulf of Aden (eastern Yemen and southern Oman). In the crust, we image low velocities beneath the Jiza‐Qamar (Yemen) and Ashawq‐Salalah (Oman) basins, likely caused by the presence of partial melt associated with magmatic plumbing systems beneath the rifted margin. Our results provide strong evidence that magma intrusion persists after breakup, modifying the composition and thermal structure of the continental margin. The coincidence between zones of crustal intrusion and steep gradients in lithospheric thinning, as well as with transform faults, suggests that magmatism post‐breakup may be driven by small‐scale convection and enhanced by edge‐driven flow at the juxtaposition of lithosphere of varying thickness and thermal age.  相似文献   

8.
青藏高原东缘地壳上地幔结构及其动力学意义   总被引:3,自引:0,他引:3       下载免费PDF全文
张忠杰  陈赘  田小波 《地质科学》2009,44(4):1136-1150
本文综述了我们在青藏高原东缘实施的垂直切过龙门山断裂带宽频带地震探测的研究成果,揭示了研究区复杂的地壳上地幔结构,结果表明松潘-甘孜地块与四川盆地西缘莫霍面深度为58 km与40 km±,在龙门山断裂带下方存在约15 km的莫霍面错断; 松潘-甘孜与龙门山断裂带域地壳纵横波速度比Vp/Vs比值远大于173,预示着粘性下地壳流或基性/超基性物质的存在。探讨了研究区强烈的盆山之间以及深部不同层圈之间的相互作用,推断四川盆地对青藏高原东缘软流圈驱动的物质东向逃逸阻挡作用可能深达整个上地幔。  相似文献   

9.
This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts’s flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.  相似文献   

10.
岩浆在被动大陆边缘的张-破裂过程中起到决定性作用.南海东北部陆缘发育厚度达10 km的下地壳高速体,其成因机制长期存在争议,影响了对南海东北部陆缘构造归属的界定.为了分析南海共轭陆缘的张破裂机制,本文调研了国内外最新研究进展,系统分析了南海南北陆缘的地壳结构和岩浆活动特点,提出:南海陆缘和海盆中发育有大量岩浆活动,但东...  相似文献   

11.
中国岩石圈的基本特征   总被引:9,自引:2,他引:9  
李廷栋 《地学前缘》2010,17(3):1-13
中国及邻区岩石圈结构构造十分复杂,并具有若干明显的特点:中国大陆地壳西厚东薄、南厚北薄,青藏高原地壳平均厚度为60~65 km,最厚达80 km;东部地区一般为30~35 km,南中国海中央海盆平均只有5 km;中国大陆地壳平均厚度为476 km,大大超过全球地壳392 km的平均厚度。中国大陆及邻区岩石圈亦呈西厚东薄、南厚北薄的变化趋势,青藏高原及西北地区岩石圈平均厚度为165 km,塔里木盆地中东部、帕米尔与昌都地区岩石圈厚度可达180~200 km。大兴安岭-太行山-武陵山以东,包括边缘海为岩石圈减薄区,厚度为50~85 km。西部岩石圈、软流圈“层状结构”明显,反映了板块碰撞汇聚的动力学环境;东部岩石圈、软流圈呈“块状镶嵌结构”,岩石圈薄,软流圈厚,反映了地壳拉张、软流圈物质上涌的特点,并在东亚及西太平洋地区85~250 km深处形成一巨型低速异常体。中国东部上、下地壳及地壳、岩石圈地幔之间普遍存在“上老下新”年龄结构。  相似文献   

12.
Rocks of the west flank of the northern Appalachian Orogen (miogeocline) record the history of the late Precambrian-early Paleozoic passive continental margin of Eastern North America. The ancient margin was destroyed by ophiolite obduction and arc collision during the Ordovician Taconic Orogeny. The present sinuous form of the miogeocline is interpreted to reflect ancient promontories and re-entrants of a previous orthogonal margin bounded by rifts and transforms.Four major terranes are recognized east of the miogeocline in Newfoundland and Nova Scotia. From west to east, these are the Dunnage, Gander, Avalon and Meguma. The Dunnage and Gander terranes were linked to the miogeocline during the Middle Ordovician Taconian Orogeny. The Avalon terrane arrived later, possibly during the mid-Paleozoic Acadian Orogeny. The Meguma terrane of southern Nova Scotia had docked with the Avalon terrane by Carboniferous time. The Dunnage terrane contains arc volcanics which lie above an ophiolitic substrate. The Gander terrane comprises a thick sequence of clastic sedimentary rocks, underlain by basement rocks with continental affinities. It has been interpreted as a continental margin, perhaps once on the eastern side of the Paleozoic Iapetus ocean. The Avalon terrane consists of belts of sedimentary and volcanic rocks which are probably underlain by Grenvillian basement. Its tectonic affinities are unclear. The Meguma terrane comprises a thick sequence of sediments, derived from the south-east. It is found only in southeastern Atlantic Canada. The boundaries between terranes are compressional in the west and steep, transcurrent faults in the east.The surface extent of the geological terranes is grossly correlative with deep structural zones, although no direct evidence exists for linking the two because most surface structures can be traced geophysically to only a few kilometres depth. A striking feature of the deep crustal structure is a lower, high velocity crustal layer beneath the Dunnage and Gander terranes.The modern margin of Atlantic Canada developed by rifting and by transform motion between adjacent continents. Stretching and thinning of the lithosphere, and the consequent production of basaltic magma that in places intrudes or underplates the thinned continental crust, are the most likely processes responsible for the evolution of the modern margin. These processes predict the observed deep sedimentary basins along the margin, the thinning of continental crust, and the high seismic velocities found within the ocean-continent transition zones.Rifting adjacent to Nova Scotia began in Late Triassic-Early Jurassic time between the present African and North American plates. These plate motions are also responsible for the major transform margin south of the Grand Banks. Separation between Iberia and the eastern Grand Banks occurred in mid-Cretaceous time, before the Late Cretaceous opening of the Labrador Sea. While the rifted segments of the margin exhibit deep sedimentary basins and thinned continental crust, the Grand Banks transform segment is characterized by a sharp transition zone and a relatively thin sediment cover. Numerous volcanic seamounts are built on the ocean crust adjacent to this transform segment.Mimicry of Paleozoic promontories and re-entrants by modern rift and transform margin segments, the location of Mesozoic sedimentary basins on ancestral Appalachian structures, and the reactivation and propagation of major Precambrian and Paleozoic structural boundaries during the latest phase of ocean opening attest to ancestral controls of the modern margins.The rift phase of both the ancient and modern passive margins is characterized by volcanism, mafic dike intrusion and by the development of basins filled with clastic sediments. The drift phase of both the ancient margin and the present Nova Scotia margin is marked by a change in sedimentary environment, such that carbonates replaced the rift phase clastic sediments. Two of the markers used to delineate the ancient ocean-continent transition zone; carbonate banks and steep gravity anomaly gradients, should be used with caution as the modern analogs of these markers may lie 100 km or more of this transition zone. Furthermore, it is naive to view the ancient transition as simple and narrow, for the modern margins exhibits complex transition zones between 30 and 300 km wide.In general, the evolution of the ancient and modern passive margins appear to be remarkably similar. Predictably, closing the present Atlantic will mimic the evolution of the Appalachian Orogen.  相似文献   

13.
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚并生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞以及碰撞如何使大陆变形的过程,是对全球关切的科学奥秘的探索。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。二十多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho面信息的技术瓶颈,揭露了陆-陆碰撞过程。本文在探测研究成果的基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂(而不是龙门山断裂)是扬子板块的西缘边界,高原腹地Moho面厚度薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,不仅沿雅鲁藏布江缝合带走向印度地壳俯冲行为存在东西变化,而且印度地壳向北行进到拉萨地体内部的位置也不同。在缝合带中部,研究显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程中发生物质的回返与构造叠置,这导致印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射以及近于平的Moho面都反映出亚洲板块南缘处于伸展构造环境。  相似文献   

14.
《China Geology》2021,4(1):32-43
When and how the Tibetan Plateau formed and maintained its thick crust and high elevation on Earth is continuing debated. Specifically, the coupling relationship between crustal thickening and corresponding paleoelevation changing has not been well studied. The dominant factors in crustal thickness changing are crustal shortening, magmatic input and surface erosion rates. Crustal thickness change and corresponding paleoelevation variation with time were further linked by an isostatic equation in this study. Since 120 Ma crustal shortening, magmatic input and surface erosion rates data from the central Tibetan Plateau are took as input parameters. By using a one-dimensional isostasy model, the authors captured the first-order relationship between crustal thickening and historical elevation responses over the central Tibetan Plateau, including the Qiangtang and Lhasa terranes. Based on the modeling results, the authors primarily concluded that the Qiangtang terrane crust gradually thickened to ca. 63 km at ca. 40 Ma, mainly due to tectonic shortening and minor magmatic input combined with a slow erosion rate. However, the Lhasa terrane crust thickened by a combination of tectonic shortening, extensive magmatic input and probably Indian plate underthrusting, which thickened the Lhasa crust over 75 km since 25 Ma. Moreover, a long-standing elevation >4000 m was strongly coupled with a thickened crust since about 35 Ma in the central Tibetan Plateau.©2021 China Geology Editorial Office.  相似文献   

15.
Thin-sheet modelling of lithospheric deformation and surface mass transport   总被引:1,自引:0,他引:1  
We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping the large-scale deformation of the crust. In order to study these effects in 3D (planform view), we develop a numerical model in which both the dynamics of lithospheric deformation and surface processes are fully coupled. Deformation is calculated as a thin viscous layer with a vertically-averaged rheology and subjected to plane stresses. The coupled system of equations for momentum and energy conservation is solved numerically. This model accounts for the isostatic and potential-energy effects due to crustal and lithospheric thickness variations. The results show that the variations of gravitational potential energy due to the lateral changes of the lithosphere–asthenosphere boundary can modify the mode of deformation of the lithosphere. Surface processes, incorporated to the model via a diffusive transport equation, rather than just passively reacting to changes in topography, play an active role in controlling the lateral variations of the effective viscosity and hence of the deformation of the lithosphere.  相似文献   

16.
http://www.sciencedirect.com/science/article/pii/S1674987110000071   总被引:2,自引:1,他引:1  
<正>The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics.Firstly,China's continental crust is thick in the west but thins to the east,and thick in the south but thins to the north.Secondly,the continental crust of the Qinghai—Tibet Plateau has an average thickness of 60—65 km with a maximum thickness of 80 km,whereas in eastern China the average thickness is 30—35 km,with a minimum thickness of only 5 km in the center of the South China Sea.The average thickness of continental crust in China is 47.6 km,which greatly exceeds the global average thickness of 39.2 km.Thirdly,as with the crust,the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south,and thinner in the east and north.The lithosphere of the Qinghai—Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180—200 km in the central and eastern parts of the Tarim Basin,Pamir, and Changdu areas.In contrast,the vast areas to the east of the Da Hinggan Ling—Taihang—Wuling Mountains,including the marginal seas,are characterized by lithospheric thicknesses of only 50—85 km.Fourthly,in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence.The lithosphere and asthenosphere in eastern China display a "block mosaic structure",where the lithosphere is thin and the asthenosphere is very thick,a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials.The latter is responsible for a huge low velocity anomaly at a depth of 85—250 km beneath East Asia and the western Pacific Ocean.Finally,in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.  相似文献   

17.
邱燕  黄文凯  杜文波  韩冰 《地球科学》2021,46(3):899-915
南海中央海盆南、北两侧陆缘分布着面积较广的减薄陆壳,正确认识海盆减薄陆壳的成因是研究南海构造演化的重要一环.通过分析基于地壳伸展因子公式计算的南海地壳拉张伸展特征和解释中生代以来的陆壳隆升特征等,证实晚中生代以来至渐新世末,该区不仅发生了地壳拉张伸展作用,还发生了较长期的地壳隆升挤压作用,致使酸性侵入岩出露地表,减薄陆壳区的上地壳厚薄分布不均.始新世南海南部发育海陆过渡相和海相沉积、北部仅为陆相沉积,暗示始新世南海古地理格局是南、北陆缘具有不同沉积环境的盆地群,二者之间应该被隆起所隔.这些地质现象说明该区地壳隆升剥蚀与地壳拉张伸展活动时间有较长的重叠.南海中央海盆两侧减薄陆壳的成因不仅仅是地壳拉张伸展所致,而是拉张伸展与隆升剥蚀共同作用的结果,因此可以认为在曾经发生了地壳隆升挤压而遭受长期剥蚀的区域,如果用全地壳伸展因子的公式来估算地壳拉张伸展程度,将得出错误的结论.   相似文献   

18.
Conditions for indentation and channelised flow are investigated with two-dimensional thermomechanical models of Alpine-type continental collision. The models mimic the development of an orogen at an initial central portion of weakened lithosphere 150 km wide, coherent with several geological reconstructions. We study in particular the role of lower crustal strength in developing peculiar geometries after 20 Ma of shortening at 1 cm/year. Crustal layers produce geometries of imbricate layers, which result from two contrasted mechanisms of either channelised ductile lateral flow or horizontal rigid-like indentation:
– Channelised lateral flow develops when the lateral lower crust has a viscosity less than 1021 Pa s, exhibiting velocities opposite to the direction of convergence. This mechanism of deformation produces subhorizontal shear zones at the boundaries between the lower crust and the more competent upper crust and lithospheric mantle. It is also associated with a topographic plateau that equilibrates with a wide (about 200 km) but quasi-constant crustal root about 50 km deep.
– In contrast, indentation occurs with lateral lower crust layers that have a viscosity greater than about 1023 Pa s, producing significant shortening and thickening of the central crust. In this case topography develops steep and narrow (around 100 km wide), associated with a thickened crust exceeding 60 km depth. A crustal-scale pop-up forms bounded by subvertical shear zones that root into the mantle lithosphere.
Keywords: Continental collision indentation; Channel flow; Lower crust; Elastic–viscous–plastic rheology  相似文献   

19.
The off-axis topography of spreading ridges is a result of tectonic and magmatic processes occurring in the axial zone and operating off the ridge axis during further evolution of the crust. The results of physical and numerical simulations have shown that differences in topography roughness, rift valley depth, frequency and amplitude of normal faults, and geometric stability of the rift axis are determined by (a) the rate of extension and accretion of the new crust, (b) the thickness of the brittle lithospheric layer, and (c) the temperature of the underlying asthenosphere. Under conditions of the fast spreading, the stationary axial magma chamber in the crust predetermines the existence of the thinner and weakened lithosphere. As a result, the axis jumps for a short distance and the axis geometry remains almost rectilinear. The destruction of the thin axial lithosphere with a low mechanical strength results in formation of frequent and low-amplitude normal faultings. All these factors lead to the formation of the characteristic poorly dissected topography of fast-spreading ridges. Without a stationary axial magmatic chamber in the crust of slow-spreading ridges and with a thick and strong lithosphere, a deeply dissected axial and off-axis topography arises. The axis jumps for a significant distance within the rift valley, giving rise to geometric instability of the axis and development of transform and nontransform offsets.  相似文献   

20.
How Alpine or Himalayan are the Central Andes?   总被引:2,自引:0,他引:2  
 Although non-collisional mountain belts, such as the Andes, and collisional mountain belts, such as the Alps and the Himalayas–Tibet, have been regarded as fundamentally different, the Central Andes share several features with the Himalayas–Tibet. The most important of these are extremely thickened (≥70 km) continental crustal roots supporting high plateaus and mountain fronts characterized by large basement thrusts. The main prerequisite for very thick crustal roots and extreme mountainous topography appears to be large-scale underthrusting of continental crust of normal thickness, irrespective of whether the crustal thrusts are antithetic with respect to subduction as in the Andes, or synthetic with respect to preceding subduction of oceanic lithosphere as in the Himalayas. In both cases sole thrusts near the base of the continental crust nucleated in thermally anomalous zones of the hinterland and then propagated across ramps into shallower detachments located within thick sedimentary or metasedimentary cover rocks. In contrast to the Central Andes and the Himalayas, the Alps are characterized by intracrustal detachment which allowed both the subduction of lower crust and a stacking of relatively thin upper crustal slivers, which make up a narrow mountain chain with a more subdued topography. Received: 10 August 1998 / Accepted: 1 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号