首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixty-five samples from selected source bed-type shale sequences from three exploration wells were analysed for yield and detailed composition of light hydrocarbons(C2C7) by a new hydrogen stripping/capillary gas chromatographic technique. In spite of low maturation levels (0.35–0.55% vitrinite reflectance), significant generation of ethane and propane was recognized in a Jurassic source bed sequence bearing hydrogen-poor kerogens. Light hydrocarbon generation in another and mature Jurassic source rock sequence is controlled by kerogen quality. Associated with a change from hydrogen-poor to hydrogen-rich kerogens, yields of total and most individual hydrocarbons exhibit orders-of-magnitude increases. At the same time, iso/n-alkane ratios for butanes, pentanes and heptanes decrease significantly. A study of an interbedded marine/nonmarine coal-bearing sequence of Upper Carboniferous age from the Ruhr area, West Germany, revealed that a marine shale unit in comparison to the adjacent coal seam is more prolific in generating n-alkanes of increasing molecular size.A case history for migration of light hydrocarbons by means of diffusion through shales is presented. In two shallow core holes in Campanian/Maastrichtian shales in West Greenland, upward diffusion of ethane to pentane range hydrocarbons is an active process within the near-surface 3 m interval. Diffusive losses within this interval amount to 99.8% for propane, 85.6% for n-butane and 38.9% for n-pentane.  相似文献   

2.
To determine the origin, maturity, formation mechanism and secondary process of marine natural gases in Northeastern Sichuan area, molecular moieties and carbon isotopic data of the Carboniferous and Triassic gases have been analyzed. Typical samples of marine gas precursors including low-maturity kerogen, dispersed liquid hydrocarbons (DLHs) in source rocks, residual kerogen and oil have been examined in a closed system, and several published geochemical diagrams of gas origins have been calibrated by using laboratory data. Results show that both Carboniferous and Triassic gases in the study area have a thermogenic origin. Migration leads to stronger compositional and weak isotopic fractionation, and is path dependent. Carboniferous gases and low-H2S gases are mainly formed by secondary cracking of oil, whereas high-H2S gases are clearly related to the TSR (Thermal Sulfate Reduction) process. Gases in NE Sichuan show a mixture of heavy (13C-enriched) methane in comparison to the lower maturated ethane of Triassic gas samples, suggesting a similar source and maturity for ethane and propane of Carboniferous gases, and a mixture of heavy ethane to the propane for Triassic gases. Based on the data plotted in the diagram of Chung et al. (1988), the residual kerogen from Silurian marine shale and palaeo oil reservoirs are the main source for Carboniferous gases, and that the residual kerogen from Silurian and Permian marine rocks and Permian paleao oil reservoirs constitute the principal source of Triassic gases.  相似文献   

3.
The Deccan Syneclise is considered to have significant hydrocarbon potential.However,significant hydrocarbon discoveries,particularly for Mesozoic sequences,have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks.In this study,near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area.Soil samples were collected from favorable areas identified by integrated geophysical studies.The compositional and isotopic signatures of adsorbed gaseous hydrocarbons(methane through butane) were used as surface indicators of petroleum micro-seepages.An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons(C1-C4) and their carbon isotopes from the western part of Tapti graben,Deccan Syneclise,India.The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases.High concentrations of adsorbed thermogenic methane(C_1 = 518 ppb) and ethane plus higher hydrocarbons(ΣC_(2+) = 977 ppb) were observed.Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents.This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks,beneath Deccan Traps.The carbon isotopic composition of methane,ethane and propane ranges are from-22.5‰ to-30.2‰ PDB,-18.0‰to 27.1‰ PDB and 16.9‰-32.1‰ PDB respectively,which are in thermogenic source.Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks.Prominent hydrocarbon concentrations were associated with dykes,lineaments and presented on thinner basaltic cover in the study area,which probably acts as channel for the micro-seepage of hydrocarbons.  相似文献   

4.
Surface adsorbed gas surveys and geo-microbiological surveys are known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish intense exploration priorities amongst the identified warm areas. The present investigation aims to explore correlation between the adsorbed gas distribution pattern with the distribution of the counts of methane, ethane, propane and butane microbial oxidizers in the sub soil samples to establish the role of the latter in identifying the upward migration of hydrocarbons especially in the known petroliferous Krishna-Godavari Basin, India. A total of 135 soil samples were collected near oil and gas fields of Tatipaka, Pasarlapudi areas of Krishna Godavari Basin, Andhra Pradesh. The soil samples were collected from a depth of 2?C2.5 m. The samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotopes (??13Cmethane). The microbial prospecting studies showed the presence of high bacterial population for methane (3.94 × 105 cfu/gm), ethane (3.85 × 105 cfu/gm), propane (4.85 × 105 cfu/gm) and butane oxidizing bacteria (3.63 × 105 cfu/gm) in soil samples indicating microseepage of hydrocarbons. The light gaseous hydrocarbon analysis showed 83 ppb, 92 ppb, 134 ppb, 187 ppb and 316 ppb of C1, C2, C3, nC4 and nC5, respectively, and the carbon isotopic composition of ??13C1 of the samples ranged between ? 36.6 ?? to ?22.7?? (Pee Dee Belemnite) values, which presents convincing evidence that the adsorbed soil gases collected from these sediments are of thermogenic origin. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/ gas fields of K.G basin. Microbial surveys indicating microseepage of hydrocarbons can, therefore, independently precede other geochemical and geophysical surveys to delineate areas warm with hydrocarbons and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the K.G basin.  相似文献   

5.
This study aims to assess the hydrocarbon potential of Ganga basin utilizing the near surface geochemical prospecting techniques. It is based on the concept that the light gaseous hydrocarbons from the oil and gas reservoirs reach the surface through micro seepage, gets adsorbed to soil matrix and leave their signatures in soils and sediments, which can be quantified. The study showed an increased occurrence of methane (C1), ethane (C2) and propane (C3) in the soil samples. The concentrations of light gaseous hydrocarbons determined by Gas Chromatograph ranged (in ppb) as follows, C1: 0–519, C2: 0–7 and C3: 0–2. The carbon isotopic (VPDB) values of methane varied between ?52.2 to ?27.1‰, indicating thermogenic origin of the desorbed hydrocarbons. High concentrations of hydrocarbon were found to be characteristic of the Muzaffarpur region and the Gandak depression in the basin, signifying the migration of light hydrocarbon gases from subsurface to the surface and the area’s potential for hydrocarbon resources.  相似文献   

6.
Surface adsorbed gas surveys and geo-microbiological surveys are well known techniques of petroleum exploration and aim towards risk reduction in exploration by way of identifying the areas warm with hydrocarbons and to establish inter-se exploration priorities amongst the identified warm areas. The thermogenic surface adsorbed gaseous hydrocarbons distribution patterns in petroliferous areas are considered to be a credible evidence for the upward migration of hydrocarbons. The present investigation aims to explore correlation between the adsorbed gas distribution pattern and microbial oxidizers in identifying the upward migration of hydrocarbons especially in the tropical black soil terrain of known petroliferous Mehsana Block of North Cambay Basin, India. A set of 135 sub-soil samples collected, were analyzed for indicator hydrocarbon oxidizing bacteria, adsorbed light gaseous hydrocarbons and carbon isotope ratios (13Cmethane and δ13Cethane). The microbial prospecting studies showed the presence of high bacterial population for methane (5.4 × 106 cfu/gm), ethane (5.5 × 106 cfu/gm), propane (4.6 × 106 cfu/gm) and butane oxidizing bacteria (4.6 × 106 cfu/gm) in soil samples. The light gaseous hydrocarbon analysis showed that the concentration ranges of C1, C2, C3, iC4 and nC4 are 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb, respectively, and the value of carbon isotope ranges of methane ?29.5 to ?43.0‰ (V-PDB) and ethane ?19.1 to ?20.9‰ (V-PDB). The existence of un-altered petroliferous microseep (δ13C, ?43‰) of catagenetic origin is observed in the study area. Geo-microbial prospecting method and adsorbed soil gas and carbon isotope studies have shown good correlation with existing oil/gas fields of Mehsana. Microbial surveys can independently precede other geochemical and geophysical surveys to delineate area warm with hydrocarbons, and mapped microbiological anomalies may provide focus for locales of hydrocarbon accumulation in the Mehsana Block of Cambay Basin.  相似文献   

7.
塔里木盆地西部阿克莫木气田形成初探   总被引:6,自引:2,他引:6       下载免费PDF全文
塔里木盆地西部阿克莫木气田天然气为非烃组份含量较高的干气,干燥系数高达99.7%;天然气δ13C1和δ13C2值明显偏重,δ13C1为- 25.2‰~-21.9,δ13C2为-21.2~-20.2‰,如果按传统的观点该天然气应为过成熟煤成气。但是综合气源对比研究表明阿克莫木气田天然气主要源自石炭系Ⅱ型烃源岩,成藏过程研究表明该气田主要聚集了石炭系烃源岩在Ro为1.5%~1.8%之后生成的天然气,具有晚期阶段聚气的特征,这是造成阿克1井天然气组份很“干”、碳同位素很重的主要原因。  相似文献   

8.
《Applied Geochemistry》1986,1(2):301-305
Summer samples of marsh gases in Minnesota (fresh-water), Louisiana, and Delaware (fresh-water and brackish-water) yielded 50–85% methane, 3–52% “excess nitrogen”, 4–15% carbon dioxide, and small amounts of traces of hydrogen, carbon monoxide, propane, hydrogen sulfide, and C4–C7 hydrocarbons. These types of gas flows were found to decrease drastically in winter periods of sampling, and large amounts of “air” accumulate in some marsh and lake sediments. Carbon dioxide decreases in the winter samples, but carbon monoxide and hydrogen sulfide showed relative increases. Ethane is present in several, and butane in one, sample from Minnesota in the fall. There is a drop in “excess nitrogen” (non-air N2) in the winter as compared to summer samples.Specimens of marsh plants were placed in culture flasks with mud from each collecting locality and allowed to culture for several months. In composition, the cultured gases are predominantly methane, carbon dioxide, and “excess nitrogen”. Hydrogen, ethane, propane, and hydrogen sulfide are minor components. Carbon monoxide was not detected, in contrast to marsh gases. Phragmites from industrially polluted Delaware Bay evolved many additional hydrocarbons in culture, pH and Eh were monitored for Typha in culture; pH remained near 7 and Eh near − 100 mV after stabilization.Carbohydrate analyses of marsh plants indicate xylans exceed cellulose as a major source of methane in these samples; mannose, galactose, and arabinose are also important potential contributors.Delta carbon-13 values of methane from marsh gases sampled are more negative than those from laboratory-cultured source plants, whereas delta deuterium values from methane from marsh gases are less negative than those of cultured source plants.  相似文献   

9.
Greenschist facies rocks of the stratiform Cu-deposit of Tisová contain aliphatic hydrocarbons in the n-C13 to n-C22 range and n-fatty acids in the range of n-C8 to n-C22. The amount of n-fatty acids varies from 3.3 to 13.5 g. g–1. The presence of isoprenoid hydrocarbons, phytane and pristane, and the prevalence of even-numbered fatty acids over the odd ones give evidence of the biogenic origin of isolated substances. The CPI values of hydrocarbons and n-fatty acids and the number of hydrocarbons with a higher molecular weight increase in the deposit in stratigraphically upward direction. The variations in composition of organic matter in different horizons of the ore deposit are suggested to be the result of thermal alteration and/or alteration via the catalytic activity of ore minerals.  相似文献   

10.
It is broadly accepted that so-called 'thermal' gas is the product of thermal cracking, 'primary' thermal gas from kerogen cracking, and 'secondary' thermal gas from oil cracking. Since thermal cracking of hydrocarbons does not generate products at equilibrium and thermal stress should not bring them to equilibrium over geologic time, we would not expect methane, ethane, and propane to be at equilibrium in subsurface deposits. Here we report compelling evidence of natural gas at thermodynamic equilibrium. Molecular compositions are constrained to equilibrium,
  相似文献   

11.
292 chemical composition data and 82 isotopic composition data of gas samples collected from the Taibei Depression of the Turpan-Hami Basin, West China, were used in the study of their origin. Non-hydrocarbon gas is poor in most samples whereas abundant nitrogen in some samples is positively correlated with δ13C1. Although methane is the main constituent, higher molecular gaseous hydrocarbons, from ethane to pentane, are detected in most samples, in accordance with the distribution of oil reservoirs. The stable carbon isotope ratios of methane, eth-ane and propane are defined as d13C1: -45.5‰ to -33.5‰, d13C2: -30.2‰ to -10.5‰, and d13C3: 27.6‰ to -11.2‰, respectively. According to the distribution of carbon isotope ratios, 2 families of gas can be grouped, most showing normal distribution of carbon isotopes, and others having obvious heavier carbon isotopes and being of abnormal distribution. Based on the isotopic composition, the disagreement between the relationship of Δ(d13C1-d13C2) and d13C2 and that of Δ(d13C1-d13C2) and d13C2, and the calculated Ro, there are oil-associated gas, coal-derived gas and mixture of them. Other samples with obviously heavier isotopic compositions from the Yanmuxi oilfield of the Taibei Depression have been degraded by organisms.  相似文献   

12.
Natural gas exploration in Nanpu sag, Bohai Bay Basin, has achieved breakthroughs in recent years, and a number of natural gas and condensate wells with high yield have been found in several structures in the beach area. Daily gas production of single wells is up to 170,000 m3, and high-yield wells are mainly distributed in?the Nanpu No. 1 structural belt.?Studies have shown that these natural gases are mainly hydrocarbon gases, with methane content about 80% to 90% and ethane 6%-9%, so they are mainly wet gas; and non-hydrocarbons are at a low level.?Carbon isotopes of methane range from -42‰ to -36‰, and ethane from -28‰ to -26‰. Calculated maturity based on the relationship between δ13C and Ro of natural gas, the gases are equivalent to those generated from organic matter when Ro is 1.0%-1.7% (mainly 1.25%-1.32%). The natural gas is oil-type gas generated from the source rocks at mature to high mature stage, associated with condensate, so carbon isotopes of the gases are heavier. Natural gas in the Nanpu No.1 structural belt is mainly associated gas with condensate. The analysis of the origin and source of natural gas and condensate, combined with the monomer hydrocarbon carbon isotopes and biomarker, indicated that the main source rocks in the Nanpu No.1 structural belt were Es3 (the lower member of the Shahejie Formation), followed by Es1 (the upper member of the Shahejie Formation).?The high-mature hydrocarbons from source rocks in the deep sag mainly migrated through deep inherited faults into shallow traps and accumulated to form oil and gas pools. Therefore, there is a great potential for exploring gas in deep layers.  相似文献   

13.
Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results.  相似文献   

14.
The component and carbon isotope compositions were studied in the hydrocabon gases from sediments of the underwater high Posolskaya Bank (Lake Baikal). It was established that sediments of this Baikal area contain methane of microbial (C1/C2 >16000; δ13C 70 ± 3‰) and thermocatalytic (C1/C2 <100; δ13C–46 ± 3‰) origin. Some samples represent a gas mixture of thermocatalytic and microbial origin. This gas is characterized by δ13C of methane varying from–60 to–70‰ and contains a significant amount of ethane. The main homolog of methane in the thermocatalytic and mixed gas is ethane. Owing to biodegradation, propane and butanes are present in trace amounts.  相似文献   

15.
The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01–0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between −45.7‰ to −25.2‰ and −35.3‰ to −20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1–C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1–2547 ppb, 1–558 ppb, 1–181 ppb, 1–37 ppb and 1–32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar et al., 2006). The light gaseous hydrocarbon anomalies are coincident with the wrench faults (Kota – Dholpur, Ratlam – Shivpuri, Kannod – Damoh, Son Banspur – Rewa wrench) in the Vindhyan basin, which may provide conducive pathways for the migration of the hydrocarbons towards the near surface soils.  相似文献   

16.
李春园  王先彬 《沉积学报》1999,17(2):306-311
本文采用数值模拟的方法对天然气中甲烷及其同系物的δ13C排序特征进行了研究,结果表明:两种具正序分布特征的生物成因天然气混合后可产生具反序分布特征的天然气.相应地,两种具反序分布特征的非生物成因天然气混合后也可产生具正序分布特征的天然气.对于前者而言,作为混合的两个端元天然气,它们必须具有不同的成因或来源,或它们是明显不同的演化阶段的产物.关于松辽盆地昌德气藏若干口天然气井甲、乙、丙、丁烷碳同位素排序特征的讨论表明,用两种生物成因天然气混合的观点很难解释这种反序排列.  相似文献   

17.
This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 °C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 °C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. δ13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the δ13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than kerogen less enriched in 13C. The typically assumed linear trend for δ13C of methane, ethane and propane versus their reciprocal carbon number for a single sourced natural gas is not observed in the experimental gases. Instead, the so-called “dogleg” trend, exemplified by relatively 13C depleted methane and enriched propane as compared to ethane, is observed for all the kerogen types and at both experimental conditions. Three of the natural gases from the same thrust unit had similar “dogleg” trends indicative of Menilite source rocks with Type III kerogen. These natural gases also contained varying amounts of a microbial gas component that was approximated using the Δδ13C for methane and propane determined from the experiments. These approximations gave microbial methane components that ranged from 13–84%. The high input of microbial gas was reflected in the higher gas:oil ratios for Outer Carpathian production (115–1568 Nm3/t) compared with those determined from the experiments (65–302 Nm3/t). Two natural gas samples in the far western part of the study area had more linear trends that suggest a different organic facies of the Menilite Shales or a completely different source. This situation emphasizes the importance of conducting hydrous pyrolysis on samples representing the complete stratigraphic and lateral extent of potential source rocks in determining specific genetic gas correlations.  相似文献   

18.
The idea that natural gas is the thermal product of organic decomposition has persisted for over half a century. Crude oil is thought to be an important source of gas, cracking to wet gas above 150°C, and dry gas above 200°C. But there is little evidence to support this view. For example, crude oil is proving to be more stable than previously thought and projected to remain intact over geologic time at typical reservoir temperatures. Moreover, when oil does crack, the products do not resemble natural gas. Oil to gas could be catalytic, however, promoted by the transition metals in carbonaceous sediments. This would explain the low temperatures at which natural gas forms, and the high amounts of methane. This idea gained support recently when the natural progression of oil to dry gas was duplicated in the laboratory catalytically. We report here the isotopic composition of catalytic gas generated from crude oil and pure hydrocarbons between 150 and 200°C. δ13C for C1 through C5 was linear with 1/n (n = carbon number) in accordance with theory and typically seen in natural gases. Over extended reaction, isobutane and isopentane remained lighter than their respective normal isomers and the isotopic differentials were constant as all isomers became heavier over time. Catalytic methane, initially −51.87‰ (oil = −22.5‰), progressed to a final composition of −26.94‰, similar to the maturity trend seen in natural gases: −50‰ to −20‰. Catalytic gas is thus identical to natural gas in molecular and isotopic composition adding further support to the view that catalysis by transition metals may be a significant source of natural gas.  相似文献   

19.
Reconnaissance surface geochemical survey for adsorbed soil gas analysis conducted in Proterozoic Bhima and Kaladgi Basins, have revealed occurrence of anomalous concentrations of light gaseous hydrocarbons i.e. C1 to C4 (CH4, C2H6, C3H8, i-C4H10 and n-C4H10) in the near surface soils. The concentrations of C1 and ΣC2+(C2H6+C3H8+ i-C4H10+ n-C4H10) in Bhima and Kaladgi Basins are in the range of 1–2594 ppb and 1 to 57 ppb and 1–1142 ppb and 1–490 ppb, respectively. The carbon isotopic data of adsorbed soil gas methane in few selected samples are in the range of −29.9 to −39‰ (PDB). The evaluation of adsorbed soil gas data indicates that all the gas components are cogenetic and hydrocarbon ratios of C1/(C2+C3) < 10 and C3/C1*1000 between 60–500 and 20–60 suggest that the adsorbed gases are derived from oil and gas-condensate zones. The carbon isotopic values of methane further support thermogenic origin of these migrated gases. The concentration distribution of C1 and ΣC2+ in the study areas illustrate C1 and ΣC2+ anomalies near Katamadevarhalli, Andola and Talikota in Bhima Basin and near Kaladgi, Lokapur and north of Mudhol in Kaladgi Basin. The hydrocarbon anomalies near the surface coincide with the favourable subsurface structural features and correlate with existing geochemical and geophysical data in these basins suggesting seepage related anomalies.  相似文献   

20.
Intact natural gas hydrate of structure II made up more than 80% of the water present in nearbottom core material recovered from the Gulf of Mexico. Solid-state carbon-13 nuclear magnetic resonance with magic-angle spinning gave resolved lines from ethane, propane and isobutane and apparently from methane in the two sizes of cage in the hydrate lattice. Low-temperature dielectric loss peaks were assigned to reorientation of encaged propane, isobutane, H2S and CO2 molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号