首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A maximal spectrum of gravitational radiation from sources outside our galaxy is calculated. The sources are galaxies, quasars and events that occur in the early history of the universe. The major contribution is from galaxies whose effect extends over the frequency region 10–810+4Hz, peaking at 10–110 Hz, with a spectral flux of 10 erg cm–2, s–1. The main processes of gravitational radiation in the galaxies are stellar collapse into a black hole and dying binary systems. In the region 10–4104 Hz the background spectrum is well above the detection levels of currently proposed detectors. FromMinimal considerations of this spectrum it is determined that the density of gravitational radiation is 10–39g cm–3. This background spectrum is sensitive to galactic evolution and especially sensitive to the upper mass limits and mass distribution of stars in galactic models. Therefore, the spectrum could provide information about galactic evolution complementary to that obtained by electromagnetic investigations.  相似文献   

2.
Low-frequency gravitational radiation, with wavelengths reaching or exceeding interplanetary distances, and with a mean energy density of the order of the critical cosmological density c , generates a frequency-shift of order/10–15 h 0(1/108km)(/ c )1/2 in electromagnetic signals transponded by interplanetary spacecraft at a distancel from the Earth.  相似文献   

3.
The high-frequency electromagnetic and gravitational radiation from a relativistic particle falling into a Kerr and Schwarzschild black hole is considered. The spectral and angular distributions of the radiation power are calculated by the WKB technique to Teukolsky's equations. The spectra obtained have a characteristic exponential cut-off at the frequency = char. which is proportional to the particle Lorentz factor =(1–v 2/c2)–1/2. At the frequencies as low as those compared with char. both electromagnetic and gravitational spectra are flat. The amount of the energy emitted in the low-frequency modes of the radiation depends strongly on the radiation spin. It is proportional to ln for the electromagnetic and to 3 for the gravitational radiation.  相似文献   

4.
The equations for the variation of the osculating elements of a satellite moving in an axi-symmetric gravitational field are integrated to yield the complete first-order perturbations for the elements of the orbit. The expressions obtained include the effects produced by the second to eighth spherical harmonics. The orbital elements are presented in the most general form of summations by means of Hansen coefficients. Due to their general forms it is a simple matter to estimate the perturbations of any higher harmonic by simply increasing the index of summation. Finally, this paper gives the respective general expressions for the secular perturbations of the orbital elements. The formulae presented should be useful for the reductions of Earth-satellite observations and geopotential studies based on them.List of Symbols semi-major axis - C jk n (, ) cosine functions of and - e eccentricity of the orbit - f acceleration vector of perturbing force - f sin2t - i inclination of the orbit - J n coefficients in the potential expansion - M mean anomaly - n mean motion - p semi-latus rectum of the orbit - R, S, andW components of the perturbing acceleration - r radius-vector of satellite - r magnitude ofr - S jk n (, ) sine functions of and - T time of perigee passage - u argument of latitude - U gravitational potential - true anomaly - V perturbing potential - G(M++m) (gravitational constant times the sum of the masses of Earth and satellite) - n,k coefficients ofR component of disturbing acceleration (funtions off) - n,k coefficients ofS andW components of disturbing acceleration (functions off) - mean anomaly at timet=0 - X 0 n,m zero-order Hansen coefficients - argument of perigee - right ascension of the ascending node  相似文献   

5.
An idea is developed that the vacuum in the gravitational field acquires properties of an elastic medium described by a definite tension ik . The vacuum is stated to also participate in the formation of the space-time metric, together with the usual matter. So, the matter, vacuum and metric form a complex unity determined by the solution of the field equations. The vacuum may prove to play an essential role in the extremely strong fields existing in superdense celestial bodies. The tensor ik is not to be identified with the pseudo-tensor of the energy-momentum of the gravitational field the idea of which is preserved.The problem of vacuum is investigated in the case of the central symmetry static field. A number of properties of the tensor ik is found using the symmetry of the field and comparison with the post-Newton limit. The external and internal problems, as well as the procedure of joining the solutions on the surface of a celestial body, have been formulated. The stellar surface is determined in the usual way:P(r) = 0 whereP is the matter pressure. The theory includes three dimensionless parametersa=p/,b=p / (,p, p are the density of the vacuum energy and of its pressures in the radial and transverse directions) and determining the vacuum elastic properties. Generally speaking, they depend on the valueP/c2 in the stellar centre where is the mass density. From general physical considerations it is shown that 0 1 + lim P (l/q). The field equations are solved for the simple version of the theoryb=–a. There are solutions corresponding to superdense celestial bodies with masses considerably exceeding that of the Sun.  相似文献   

6.
The paper represents the Earth's gravitational potentialV, outside a sphere bounding the Earth, by means of its difference V from the author's spheroidal potential. The difference V is in turn represented as arising from a surface density on the sphere bounding the Earth. Because of the slow decrease with ordern of the normalized coefficients in the spherical harmonic expansion ofV, the density anomalies from which the higher coefficients arise must occur in regions close to the Earth's surface. The surface density is thus an idealization of the product of the density anomaly and the crustal thicknessb. Values of are computed from potential coefficients obtained from two sources, Rapp and the Smithsonian Astrophysical Observatory. The two sources give qualitative agreement for the values of and for its contour map. The numerical values obtained for are compatible with the idea that the responsible density anomalies are reasonably small, i.e., less than 0.05 g/cm3, and occur in the crust alone.This paper was prepared under the sponsorship of the Electronics Research Center of the National Aeronautics and Space Administration through NASA Grant NGR 22-009-311.  相似文献   

7.
It is found that the relationship between the potential energy and the moment of the inertia independent of the radial mass distribution obtained earlier for the sphere also holds in the case of the ellipsoidal mass distribution for the ellipsoid of rotation.The possibility of application of the energy virial relations for solution of the evolutionary problems of the gravitating gaseous sphere, with the help of the relationship found earlier, is demonstrated. The physical conditions on the gaseous sphere boundary are introduced. The existence of two branches of evolution, the proton one and the electron one, is established. The problem of the gravitational contraction velocity during sphere evolution is solved. The relationship between the boundary temperature and the gaseous sphere radius as well as between the luminosity and the body mass is obtained. Some limiting relations for the final stage of the gaseous sphere evolution are found.
, , , . . . — . . , . .
  相似文献   

8.
Further exploration of the -field theory as first proposed by Yu (1989) is here presented to cover the equation of motion of a test particle which induces gravitational radiation. The same theory is shown to contain an exact gravitational radiation equation derived as a logical consequence of field equations without extra postulates. In this general dynamic context the theory is renamed The (,A µ )-field Theory.  相似文献   

9.
We emphasize the sharp distinctions between different one-body gravitational trajectories made by the ratio of time averagesR(t)E kin/E pot.R is calculated as a function of the eccentricity (e) and of the energy (E). Whent, independently ofe andE, R1/2 for closed orbits (this clearly illustrates the fulfillment of the virial theorem in classical mechanics); whereasR1, at any time, for open orbits.  相似文献   

10.
A theory with variable gravitational constant, based on the bimetric formulation of general relativity, is suggested. It is in agreement with the Newtonian and post-Newtonian approximations of the theory of gravitation when the theory parameter ||4×10–6. The statical spherical-symmetric distribution of gravitating masses is investigated. It is shown that the total action (including the own gravitational field of the system)S=–M, where is the time in the remote system of reference, relative to which the celestial body is in rest. In the Brans-Dicke theory ||1 andSM. The Tolman formula for the massM in the Einstein theory is also valid in the suggestedGeneralized Bimetric Theory of Gravitation. External analytical and internal numerical solutions of the field equations are found for the case of incompressible matter. It is shown that static and supermassive configurations may exist if –0.13<0.  相似文献   

11.
We have studied semiclassical models with a classical scalar field, givingexact solutions in the cases of a 4 and an exponentialself-interaction potential, in the last case we have also studied theinfluence of the vacuum polarization terms on the stability of the power-lawsolutions. We have also found cosmological exact solutions to the higherorder gravitational equations derived from a Lagrangian with a R k Rstructure, and investigated the stability of the de Sitter and Minkowskispace-time in the sixth order approximation of this theory.  相似文献   

12.
13.
14.
Based on Chandrasekhar's and Lebovitz's treatment of the roto-vibrational modes of a homogeneous compressible neutron star, we calculate damping rates per unit eccentricity of toroidal mode and pulsational mode by gravitational radiation. It is found that the damping rate of the pulsational mode which becomes the quadrupole mode (emits gravitational wave) has a minimum at the eccentricity e = 0.72 for = 4/3, and 8/5 whereas both the pulsational mode with = 5/3 and the toroidal mode have no minima, i.e., the pseudo-radial mode can last many years longer than the toroidal mode. We suggest to measure the damping rate of pulsational mode only for the detection of a strong gravity wave source.Submitted for presentation in the 6th Asian Pacific Regional Meeting on Astronomy, I.A.U., to be held on 16–20 August 1993 at IUCAA, Pune, India.  相似文献   

15.
This article deals with the experimental verification of the generalized Newton's gravitational law, formulated by Z. Horák. According to this law, the gravitational force between two resting homogeneous bodies immersed in resting homogeneous fluids is dependent on the densities 1, 2 of both the bodies and densities1,2 of both the fluids: furthermore,F=(1–1/ 1)(1–2/ 2)F=h 1 h 2 F, whereF is the force between the bodies in a vacuum andh 1,h 2 are the density factors. The aim of the experimental verification of the law was to determine the density factors by exploring the phenomenon that is influenced by the gravitational interaction of the bodies immersed in different fluids.The dynamic torsion-balance method was applied, during which the period of swinging of the torsion pendulum in the gravitational field of two cast iron spheres in the water.The swings of the pendulum suspended on a torsion filament in a vacuum chamber were measured in three regimes: (1) without the spheres, (2) with the spheres in the air, (3) with the spheres in the water. The motion of the pendulum was scanned by a laser ray, the period of the swing was measured electronically. The density factor determined by the dynamic torsion-balance method was 0.8562±0.0035, whereas the same factor determined by direct calculation from the densities was 0.8542±0.0003. Thus, with the relative error of 0.4%, the validity of Horák's gravitational law was proved.  相似文献   

16.
17.
In this paper we consider the low-frequency limit of the electromagnetic and gravitational radiation from a relativistic particle falling into a Kerr black hole. The radiation spectra are obtained with help of the solution of Teukolsky's equations in terms of the hypergeometric functions. It is shown that in the low-frequency limit the spectra are flat and the power radiated depends strongly on the radiation spin. Dependence of the power on the initial kinetic energy of the radiating particle has the same character as that obtained by the WKB technique for the band of frequencies , where 0=(1–u 0 2 /c 2)–1/2 is the particle Lorentz factor at infinity. The full energy radiated is proportional to 0 in 0 for electromagnetic radiation and to 0 3 for gravitational radiation.  相似文献   

18.
The assumption of a linearly expanding universe for the JBD-cosmological equations generates a set of solutions for the barotropic equations of statep= (=const.). These solutions turn out to be valid for closed space-except in the casep= which is for open space. The gravitational constant which is inversely proportional to the scalar field increases with time if >–1/3 and decreases for <–1/3. No solution exists for =1/3. The Brans-Dicke parameter is negative if <–1/3.  相似文献   

19.
An anisotropic model with variableG and and bulk viscosity is considered. The model exhibits an inflationary behavior during which the coefficient of bulk viscosity varies lineraly with the energy density. This allows the anisotropy energy to decrease exponentially with time. Other results overlap with our earlier work with a different ansatz for . The gravitational constant was found to increase during the radiation and matter epochs.  相似文献   

20.
It is shown that, for the scalar-tensor cosmology (STC) by Jordan-Brans-Dicke (JBD), in general anisotropic solution the oscillatory mixmaster regime near the singularity will be destroyed by the scalar source-free field and replaced by monotonousV 3-collapse into the point or into the line and plane (only in caseG0) even in the presence of the primordial source-free electromagnetic (EM) field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号