首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Dust emission in the non-photospheric 10-μm continua of HL Tau and Taurus-Elias 7 (Haro6-10, GV Tau) is distinguished from foreground silicate absorption using a simple disc model with radial power-law temperature and mass–density distributions based on the IR–submm model of T Tauri stars by Adams, Lada & Shu with foreground extinction. The resulting 10-μm absorption profiles are remarkably similar to those of the field star Taurus-Elias 16 obtained by Bowey, Adamson & Whittet. The fitted temperature indices are 0.44 (HL Tau) and 0.33 (Elias 7) in agreement with Boss's theoretical models of the 200–300 K region, but lower than those of IR–submm discs (0.5–0.61; Mannings & Emerson); a significant fraction of the modelled 10-μm emission of HL Tau is optically thin, whilst that of Elias 7 is optically thick. We suggest that HL Tau's optically thin component arises from silicate dust within low-density layers above an optically thick disc.  相似文献   

2.
3.
4.
5.
6.
We present new absorbance spectra of the 3-, 6- and 12-μm features of amorphous and crystalline H2O ice obtained between 10 and 140 K. Three sets of measurements have been made. In series I, the ice film was initially deposited on to a CsI substrate at 10 K and successive spectra were then obtained at intermediate temperatures as the ice was warmed up to 140 K. The second set, series II, comprises spectra for ice films deposited and measured at temperatures between 10 and 140 K. In the third set of measurements, series III, spectra were obtained for an ice film deposited at 140 K and then at intermediate temperatures as the film was cooled down to 10 K. The series I and II results show that the ice undergoes an amorphous-to-crystalline phase transition in the 110–120 K range. The 3- and 12-μm bands have similar trends in full width at half-maximum (FWHM) and opposite peak wavelength shifts. The temperature behaviour of the 6-μm band is different, as no clear phase transition temperature can be discerned from its FWHM and peak wavelength position data. In the series III spectra the peak wavelength positions and FWHM of the three bands remain relatively constant, thus demonstrating the stability of the crystalline phase against thermal cycling. A comparison between the laboratory results and astronomical spectra suggests that the identification of the librational band of H2O ice in OH 231.8 + 4.2 may be incorrect.  相似文献   

7.
The 2.2–200 μm spectrum of OH32.8–0.3 has been modelled. Mie theory and radiative transfer models of the 3-μm band of H2O ice are consistent with a strongly crystalline structural phase. This is also confirmed by the presence of a 44/62-μm band complex analogous to that of laboratory crystalline H2O ice analogues. The highly ordered phase may be the result of direct crystallization upon deposition as has been theorized by Kouchi et al. At the large total optical depths typical of the radiative transfer models for this object (τ9.7∼ 40), we find no significant difference between the Mie theory and radiative transfer models of the 3-μm band. On the other hand, large differences are found for the 9.7-μm silicate band. In contrast to Mie theory extinction profiles, those computed via radiative transfer modelling indicate that the 12-μm H2O ice band (the so-called librational band) is substantially attenuated. This, in addition to the inherent broadness and weakness of the 12-μm ice band, may explain why this band has not been clearly identified in observational spectra of oxygen–rich evolved objects.  相似文献   

8.
Silicon carbide (SiC), a refractory material, condenses near the photospheres of C-rich asymptotic giant branch stars, giving rise to a conspicuous emission feature at 11.3 μm. In the presence of a stellar wind, the SiC grains are carried outwards to colder regions, where less-refractory carbonaceous material can condense, either by itself or in mantles upon SiC grains. Enough carbon can condense on the latter that their specific feature is completely veiled. Thus the following may be explained: (i) the coexistence of the SiC feature protruding above a carbonaceous continuum, with a range of contrasts, corresponding to various volume ratios of mantle to core; or (ii) the ultimate disappearance of the 11.3-μm feature from the interstellar medium, where the mantle has become completely opaque due to the much higher cosmic abundance of carbon.  相似文献   

9.
We have calculated the circumstellar extinction curves produced by dust grains which absorb and scatter the stellar radiation in the shells of pre-main-sequence stars. A Monte Carlo method was used to model the radiative transfer in non-spherical shells. The dependence on the particle size distribution and the dust shell parameters has been examined.The application of the theoretical results to explain the extinction and polarization of the Herbig Be star HD 45677 shows that the dust shell is not disk-like and that very small grains are absent in it.  相似文献   

10.
We investigate the conditions of star formation in the Large Magellanic Cloud (LMC). We have conducted a survey for water maser emission arising from massive young stellar objects in the 30 Doradus region (N 157) and several other H  ii regions in the LMC (N 105A, N 113 and N 160A). We have identified a new maser source in 30 Dor at the systemic velocity of the LMC. We have obtained 3–4 μm spectra, with the European Southern Observatory (ESO)-Very Large Telescope (VLT), of two candidate young stellar objects. N 105A IRS1 shows H recombination line emission, and its Spectral Energy Distribution (SED) and mid-infrared colours are consistent with a massive young star ionizing the molecular cloud. N 157B IRS1 is identified as an embedded young object, based on its SED and a tentative detection of water ice. The data on these four H  ii regions are combined with mid-infrared archival images from the Spitzer Space Telescope to study the location and nature of the embedded massive young stellar objects and signatures of stellar feedback. Our analysis of 30 Dor, N 113 and N 160A confirms the picture that the feedback from the massive O- and B-type stars, which creates the H  ii regions, also triggers further star formation on the interfaces of the ionized gas and the surrounding molecular cloud. Although in the dense cloud N 105A star formation seems to occur without evidence of massive star feedback, the general conditions in the LMC seem favourable for sequential star formation as a result of feedback. In an Appendix , we present water maser observations of the galactic red giants R Doradus and W Hydrae.  相似文献   

11.
12.
We present 20–110 µm absorbance spectra of H2O ice, deposited on amorphous carbon and silicate substrates, obtained over the 10–140 K temperature range. The measurements have been carried out in a manner that simulates the deposition, warming and cooling of H2O ice mantles on interstellar and circumstellar grains. For H2O ice films deposited on these substrates we find (i) similar 44-µm-band peak wavelength temperature dependences, (ii) no bandshape differences in the respective spectra, and (iii) a structural phase transition occurring between 120 and 130 K. In comparison with published data obtained using a polyethylene substrate, the 52-µm feature (the longitudinal optical mode) observed in our spectra is less prominent. This suggests the presence of material-dependent substrate effects that can alter the appearance of the H2O far-infrared spectrum. The crystallization temperature of H2O ice films deposited on our amorphous silicate substrate is significantly different from that reported by Moore et al. (1994) , who found crystallization temperatures down to < 20 K for ice also deposited on an amorphous silicate substrate. This is attributed to differences in the surface structures of the respective substrates. This may indicate that, at least in the context of laboratory measurements, substrate material composition is not as significant as substrate surface structure.  相似文献   

13.
This paper presents a study of the envelope of the young stellar object (YSO) GGD30IR. What distinguishes this from most other YSOs is the elongated absorption feature seen in silhouette against the background emission in the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire 8 μm Infrared Array Camera image of the region. The size and the symmetrical placement of GGD30IR in the centre of this feature suggest that it is an extended envelope, perhaps the remnant of the collapse of the GGD30 core. We have used the extinction in the envelope measured from (i) the reduction in the 8 μm background intensity and (ii) field star colour excesses, to estimate the envelope mass, obtaining values of 0.6 ± 0.2 and  0.5 ± 0.3 M  , respectively. To investigate the envelope further, we have obtained Australia Telescope Compact Array 3 mm continuum and HCO+ line observations of the region. The continuum emission at 3 mm arises from both a compact (unresolved; ≤730 au) core embedded in an extended envelope ∼18 000 au × 38 000 au in extent. We estimate the core mass to be 0.11 ± 0.02  M  . The HCO+ emission is extended in a direction perpendicular to the long axis of the envelope, suggesting it comes from an outflow. The spectral energy distribution (SED) provides a 2–24 μm spectral index, α= 1.0, which places GGD30IR in the Class I YSO category. Integrating the SED provides a luminosity of   L *≃ 25 ± 5 L  .  相似文献   

14.
15.
The mysterious 21 μm emission feature seen in sixteen C-rich proto-planetary nebulae (PPNe) remains unidentified since its discovery in 1989. Over a dozen of materials are suggested as the carrier candidates. In this work, we quantitatively investigate eight inorganic and one organic carrier candidates in terms of elemental abundance constraints, while previous studies mostly focus on their spectral profiles (which could be largely affected by grain size, shape and clustering effects). It is found that: (1) five candidates (TiC nanoclusters, fullerenes coordinated with Ti atoms, SiS2, doped-SiC and SiO2-coated SiC dust) violate the abundance constraints (i.e. they require too much Ti, S or Si to account for the emission power of the 21 μm band, (2) three candidates (carbon and silicon mixtures, Fe2O3 and Fe3O4), while satisfying the abundance constraints, exhibit secondary features which are not detected in the 21 μm sources and (3) nano FeO, neither exceeding the abundance budget nor producing undetected secondary features, seems to be a viable candidate, supporting the suggestions of Posch, Mutschke & Andersen.  相似文献   

16.
17.
We present near-infrared spectroscopic observations of SN 1987A covering the period 1358 to 3158 d post explosion. This is the first time that IR spectra of a supernova have been obtained to such late epochs. The spectra comprise emission from both the ejecta and the bright, ring-shaped circumstellar medium (CSM). The most prominent CSM emission lines are recombination lines of H  i and He  i , and forbidden lines of [S  iii ] and [Fe  ii ]. The ejecta spectra include allowed lines of H  i , He  i and Na  i and forbidden lines of [Si  i ], [Fe  i ], [Fe  ii ] and possibly [S  i ]. The intensity ratios and widths of the H  i ejecta lines are consistent with a low-temperature Case B recombination spectrum arising from non-thermal ionization/excitation in an extended, adiabatically-cooled H envelope, as predicted by several authors. The slow decline of the ejecta forbidden lines, especially those of [Si  i ], indicates that pure non-thermal excitation was taking place, driven increasingly by the decay of 44Ti. The ejecta iron exhibits particularly high velocities  (4000–4500 km s-1)  , supporting scenarios where fast radioactive nickel is created and ejected just after the core bounce. In addition, the ejecta lines continue to exhibit blueshifts with values ∼−200 to −800 km s−1 to at least day 2000. These blueshifts, which first appeared around day 600, probably indicate that very dense concentrations of dust persist in the ejecta, although an alternative explanation of asymmetry in the excitation conditions is not ruled out.  相似文献   

18.
We present mid-infrared spectra from individual enstatite silicate grains separated from primitive type 3 chondritic meteorites. The 2–16 μm transmission spectra were taken with microspectroscopic Fourier-transform infrared (FT-IR) techniques as part of a project to produce a data base of infrared spectra from minerals of primitive meteorites for comparison with astronomical spectra. In general, the wavelength of enstatite bands increases with the proportion of Fe. However, the wavelengths of the strong En100 bands at 10.67 and 11.67 decrease with increasing Fe content. The 11.67-μm band exhibits the largest compositional wavelength shift (twice as large as any other). Our fits of the linear dependence of the pyroxene peaks indicate that crystalline silicate peaks in the 10-μm spectra of Herbig AeBe stars, HD 179218 and 104237, are matched by pyroxenes of En90−92 and En78−80, respectively. If these simplistic comparisons with the astronomical grains are correct, then the enstatite pyroxenes seen in these environments are more Fe-rich than are the forsterite (Fo100) grains identified in the far-infrared which are found to be Mg end-member grains. This differs from the general composition of type 3 chondritic meteoritic grains in which the pyroxenes are more Mg-rich than are the olivines from the same meteorite.  相似文献   

19.
20.
The properties of accretion discs around stars and brown dwarfs in the σ Ori cluster (age 3 Myr) are studied based on near-infrared (IR) time series photometry supported by mid-IR spectral energy distributions (SEDs). We monitor ∼30 young low-mass sources over eight nights in the J and K band using the duPont telescope at Las Campanas. We find three objects showing variability with J -band amplitudes  ≥0.5 mag  ; five additional objects exhibit low-level variations. All three highly variable sources have been previously identified as highly variable; thus, we establish the long-term nature of their flux changes. The light curves contain periodic components with time-scales of  ∼0.5–8 d  , but have additional irregular variations superimposed – the characteristic behaviour for classical T Tauri stars. Based on the colour variability, we conclude that hotspots are the dominant cause of variations in two objects (#19 and #33), including one likely brown dwarf, with spot temperatures in the range of 6000–7000 K. For the third one (#2), a brown dwarf or very low-mass star, inhomogeneities at the inner edge of the disc are the likely origin of variability. Based on mid-IR data from Spitzer , we confirm that the three highly variable sources are surrounded by circum-(sub)-stellar discs. They show typical SEDs for T Tauri-like objects. Using SED models, we infer an enhanced scaleheight in the disc for the object #2, which favours the detection of disc inhomogeneities in light curves and is thus consistent with the information from variability. In the σ Ori cluster, about every fifth accreting low-mass object shows persistent high-level photometric variability. We demonstrate that estimates for fundamental parameters in such objects can be significantly improved by determining the extent and origin of the variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号