首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Equator-S magnetometer is very sensitive and has a sampling rate normally of 128 Hz. The high sampling rate for the first time allows detection of ELF waves between the ion cyclotron and the lower hybrid frequencies in the equatorial dawnside magnetosphere. The characteristics of these waves are virtually identical to the lion roars typically seen at the bottom of the magnetic troughs of magnetosheath mirror waves. The magnetospheric lion roars are near-monochromatic packets of electron whistler waves lasting for a few wave cycles only, typically 0.2 s. They are right-hand circularly polarized waves with typical amplitudes of 0.5 nT at around one tenth of the electron gyrofrequency. The cone angle between wave vector and ambient field is nearly always smaller than 1°.  相似文献   

2.
Between December 1997 and March 1998 Equator-S made a number of excursions into the dawn-side magnetosheath, over a range of local times between 6:00 and 10:40 LT. Clear mirror-like structures, characterised by compressive fluctuations in |B| on occasion lasting for up to 5 h, were observed during a significant fraction of these orbits. During most of these passes the satellite appeared to remain close to the magnetopause (within 1–2 Re), during sustained compressions of the magnetosphere, and so the characteristics of the mirror structures are used as a diagnostic of magnetosheath structure close to the magnetopause during these orbits. It is found that in the majority of cases mirror-like activity persists, undamped, to within a few minutes of the magnetopause, with no observable ramp in |B|, irrespective of the magnetic shear across the boundary. This suggests that any plasma depletion layer is typically of narrow extent or absent at the location of the satellite, at least during the subset of orbits containing strong magnetosheath mirror-mode signatures. Power spectra for the mirror signatures show predominately field aligned power, a well defined shoulder at around 3–10 × 10−2 Hz and decreasing power at higher frequencies. On occasions the fluctuations are more sinusoidal, leading to peaked spectra instead of a shoulder. In all cases mirror structures are found to lie approximately parallel to the observed magnetopause boundary. There is some indication that the amplitude of the compressional fluctuations tends to be greater closer to the magnetopause. This has not been previously reported in the Earth’s magnetosphere, but has been suggested in the case of other planets.  相似文献   

3.
Magnetic field measurements, taken by the magnetometer experiment (MAM) on board the German Equator-S spacecraft, have been used to identify and categorise 131 crossings of the dawn-side magnetopause at low latitude, providing unusual, long duration coverage of the adjacent magnetospheric regions and near magnetosheath. The crossings occurred on 31 orbits, providing unbiased coverage over the full range of local magnetic shear from 06:00 to 10:40 LT. Apogee extent places the spacecraft in conditions associated with intermediate, rather than low, solar wind dynamic pressure, as it processes into the flank region. The apogee of the spacecraft remains close to the magnetopause for mean solar wind pressure. The occurrence of the magnetopause encounters are summarised and are found to compare well with predicted boundary location, where solar wind conditions are known. Most scale with solar wind pressure. Magnetopause shape is also documented and we find that the magnetopause orientation is consistently sunward of a model boundary and is not accounted for by IMF or local magnetic shear conditions. A number of well-established crossings, particularly those at high magnetic shear, or exhibiting unusually high-pressure states, were observed and have been analysed for their boundary characteristics and some details of their boundary and near magnetosheath properties are discussed. Of particular note are the occurrence of mirror-like signatures in the adjacent magnetosheath during a significant fraction of the encounters and a high number of multiple crossings over a long time period. The latter is facilitated by the spacecraft orbit which is designed to remain in the near magnetosheath for average solar wind pressure. For most encounters, a well-ordered, tangential (draped) magnetosheath field is observed and there is little evidence of large deviations in local boundary orientations. Two passes corresponding to close conjunctions of the Geotail spacecraft are analysed to confirm boundary orientation and motion. These further show evidence of an anti-sunward moving depression on the magnetopause (which is much smaller at Equator-S). The Tsyganenko model field is used routinely to assist in categorising the crossings and some comparison of models is carried out. We note that typically the T87 model fits the data better than the T89 model during conditions of low to intermediate Kp index near the magnetopause and also near the dawn-side tail current sheet in the dawnside region.  相似文献   

4.
The special feature of the ringcore fluxgate magnetometer on Equator-S is the high time and field resolution. The scientific aim of the experiment is the investigation of waves in the 10–100 picotesla range with a time resolution up to 64 Hz. The instrument characteristics and the influence of the spacecraft on the magnetic field measurement will be discussed. The work shows that the applied pre- and inflight calibration techniques are sufficient to suppress spacecraft interferences. The offset in spin axis direction was determined for the first time with an independent field measurement by the Equator-S Electron Drift Instrument. The data presented gives an impression of the accuracy of the measurement.  相似文献   

5.
WIND observations of coherent electrostatic waves in the solar wind   总被引:4,自引:0,他引:4  
The time domain sampler (TDS) experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s.) waves: coherent wave packets of Langmuir waves with frequencies ffpe, coherent wave packets with frequencies in the ion acoustic range fpiffpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF) ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES) and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ≃25D, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations). The type (wave packet or IES) of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.  相似文献   

6.
A preliminary analysis of Pc5, ULF wave activity observed with the IMAGE magnetometer array and the EISCAT UHF radar in the post midnight sector indicates that such waves can be caused by the modulation of the ionospheric conductivity as well as the wave electric field. An observed Pc5 pulsation is divided into three separate intervals based upon the EISCAT data. In the first and third, the Pc5 waves are observed only in the measured electron density between 90 and 112 km and maxima in the electron density at these altitudes are attributed to pulsed precipitation of electrons with energies up to 40 keV which result in the height integrated Hall conductivity being pulsed between 10 and 50 S. In the second interval, the Pc5 wave is observed in the F-region ion temperature, electron density and electron temperature but not in the D and E region electron densities. The analysis suggests that the wave during this interval is a coupled Alfven and compressional mode.  相似文献   

7.
We analyse the fluctuations of the electron density and of the magnetic field in the Earth’s magnetosheath to identify the waves observed below the proton gyrofrequency. We consider two quiet magnetosheath crossings i.e. 2 days characterized by small-amplitude waves, for which the solar wind dynamic pressure was low. On 2 August 1978 the spacecraft were in the outer magnetosheath. We compare the properties of the observed narrow-band waves with those of the unstable linear wave modes calculated for an homogeneous plasma with Maxwellian electron and bi-Maxwellian (anisotropic) proton and alpha particle distributions. The Alfvén ion cyclotron (AIC) mode appears to be dominant in the data, but there are also density fluctuations nearly in phase with the magnetic fluctuations parallel to the magnetic field. Such a phase relation can be explained neither by the presence of a proton or helium AIC mode nor by the presence of a fast mode in a bi-Maxwellian plasma. We invoke the presence of the helium cut-off mode which is marginally stable in a bi-Maxwellian plasma with <alpha> particles: the observed phase relation could be due to a hybrid mode (proton AIC + helium cut-off) generated by a non-Maxwellian or a non-gyrotropic part of the ion distribution functions in the upstream magnetosheath. On 2 September 1981 the properties of the fluctuations observed in the middle of the magnetosheath can be explained by pure AIC waves generated by protons which have reached a bi-Maxwellian equilibrium. For a given wave mode, the phase difference between B \Vert and the density is sensitive to the shape of the ion and electron distribution functions: it can be a diagnosis tool for natural and simulated plasmas.  相似文献   

8.
A quantitative study of observations of the ionospheric signatures of magnetospheric ultra low frequency (ULF) waves by a high-latitude (geographic: 69.6°N 19.2°E) high-frequency Doppler sounder has been undertaken. The signatures, which are clearly correlated with pulsations in ground magnetometer data, exhibit periods in the range 100–400 s and have azimuthal wave numbers in the range 3–8. They are interpreted here as local field line resonances. Phase information provided by O- and X-mode Doppler data support the view that these are associated with field line resonances having large azimuthal scale sizes. The relative phases and amplitudes of the signatures in the Doppler and ground magnetometer data are compared with a model for the generation of Doppler signatures from incident ULF waves. The outcome suggests that the dominant mechanism involved in producing the Doppler signature is the vertical component of an E × B bulk motion of the local plasma caused by the electric field perturbation of the ULF wave.  相似文献   

9.
High-beta plasma blobs in the morningside plasma sheet   总被引:1,自引:0,他引:1  
Equator-S frequently encountered, i.e. on 30%0of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these “plasma blobs” and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena (<15°). They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.  相似文献   

10.
An electrostatic analyser (ESA) onboard the Equator-S spacecraft operating in coordination with a potential control device (PCD) has obtained the first accurate electron energy spectrum with energies &7 eV-100 eV in the vicinity of the magnetopause. On 8 January, 1998, a solar wind pressure increase pushed the magnetopause inward, leaving the Equator-S spacecraft in the magnetosheath. On the return into the magnetosphere approximately 80 min later, the magnetopause was observed by the ESA and the solid state telescopes (the SSTs detected electrons and ions with energies &20–300 keV). The high time resolution (3 s) data from ESA and SST show the boundary region contains of multiple plasma sources that appear to evolve in space and time. We show that electrons with energies &7 eV–100 eV permeate the outer regions of the magnetosphere, from the magnetopause to &6Re. Pitch-angle distributions of &20–300 keV electrons show the electrons travel in both directions along the magnetic field with a peak at 90° indicating a trapped configuration. The IMF during this interval was dominated by Bx and By components with a small Bz.  相似文献   

11.
Wind observations made at Gadanki (13.5°N) by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2–6) h from the power spectral density (PSD) spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.  相似文献   

12.
Observations of a flux transfer event (FTE) have been made simultaneously by the Equator-S spacecraft near the dayside magnetopause whilst corresponding transient plasma flows were seen in the near-conjugate polar ionosphere by the CUTLASS Finland HF radar. Prior to the occurrence of the FTE, the magnetometer on the WIND spacecraft ≈226 RE upstream of the Earth in the solar wind detected a southward turning of the interplanetary magnetic field (IMF) which is estimated to have reached the subsolar magnetopause ≈77 min later. Shortly afterwards the Equator-S magnetometer observed a typical bipolar FTE signature in the magnetic field component normal to the magnetopause, just inside the magnetosphere. Almost simultaneously the CUTLASS Finland radar observed a strong transient flow in the F region plasma between 78° and 83° magnetic latitude, near the ionospheric region predicted to map along geomagnetic field lines to the spacecraft. The flow signature (and the data set as a whole) is found to be fully consistent with the view that the FTE was formed by a burst of magnetopause reconnection.  相似文献   

13.
本文用无碰撞等离子体的CGL近似,讨论了地球磁层顶的Kelvin-Helmholtz(K-H)不稳定性问题。同可压缩MHD近似一样,CGL等离子体也存在下、上两个临界速度vc和vu。不稳定性仅当vc<0 cosα<u时才能激发,v0为磁鞘等离子体流速,α为v0和切向波矢kt间的夹角。在向阳面低纬区,时间增长率ε和空间增长率κ与可压缩MHD的相应值相近。当v0 cosα≥vu时,不稳定表面波转化为稳定的体波。各向异性对K-H不稳定性有显著影响。在近日点低纬处,若磁鞘各向异性参数S2接近水龙带不稳定性的阈值,很小的v0便能激发不稳定表面波。S2低于极小值S2min时,不稳定性不可能产生。所谓Overstability现象是不存在的。  相似文献   

14.
Boundary layers occurring in the magnetosphere can support a wide spectrumof plasma waves spanning a frequency range of a few mHz to tens of kHz andbeyond. This review describes the main characteristics of the broadband plasma waves observed in the Earth's low-latitude magnetopause boundary layer (LLBL), in the polar cap boundary layer (PCBL), and the possible generation mechanisms. The broadband waves at the low-latitude boundary layer are sufficiently intense to cause the diffusion of the magnetosheath plasma across the closed magnetospheric field lines at a rate rapid enough to populate and maintain the boundary layer itself. The rapid pitch angle scattering of energetic particles via cyclotron resonant interactionswith the waves can provide sufficient precipitation energy flux to the ionosphere to create the dayside aurora. In general, the broadband plasma waves may play an important part in the processes of local heating/acceleration of the boundary layer plasma.  相似文献   

15.
Few studies of wave processes on shore platforms have addressed the hydrodynamic thresholds that control wave transformation and energy dissipation, especially under storm conditions. We present results of a field experiment conducted during a storm on a sub‐horizontal shore platform on the east coast of Auckland, New Zealand. Small (<0.5 m) locally generated waves typically occur at the field site, whereas during the experiment the offshore wave height reached 2.3 m. Our results illustrate the important control that platform morphology has on wave characteristics. At the seaward edge of the platform a scarp abruptly descends beneath low tide level. Wave height immediately seaward of the platform was controlled by the incident conditions, but near the cliff toe wave height on the platform was independent of incident conditions. Results show that a depth threshold at the seaward platform edge > 2.5 times the gravity wave height (0.05–0.33 Hz) is necessary for waves to propagate onto the platform without breaking. On the platform surface the wave height is a direct function of water depth, with limiting maximum wave height to water depth ratios of 0.55 and 0.78 at the centre of the platform and cliff toe, respectively. A relative ‘platform edge submergence’ (water depth/water height ratio) threshold of 1.1 is identified, below which infragravity (<0.05 Hz) wave energy dominates the platform energy spectra, and above which gravity waves are dominant. Infragravity wave height transformation across the platform is governed by the relative platform edge submergence. Finally, the paper describes the first observations of wave setup on a shore platform. During the peak of the storm, wave setup on the platform at low tide (0.21 m) is consistent with measurements from planar sandy beaches, but at higher tidal stages the ratio between incident wave height and maximum setup was lower than expected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The paper presents a study of time-harmonic surface waves in a linearly inhomogeneous half-space. The study is based on the solution of that problem for an arbitrary (from 0 to 1/2) value of Poisson's ratio. Vertical vibrations due to a vertical harmonic force, which at large distances from the force represent Rayleigh-type waves, and transverse horizontal vibrations due to a horizontal force, which at large distances form waves of Love's type, are considered in detail. Material damping is taken into consideration. Inhomogeneity significantly affects relationships connecting wave characteristics and the frequency of vibration, and it is shown in the paper how this fact can be used for determining material properties (surface shear modulus, degree of inhomogeneity, damping ratio) with the help of experimental results concerning wave propagation over the surface of the half-space. It is shown that for forced waves the relationship between the wave phase angle and distance can significantly differ from a straight line, i.e. the wave number varies with distance. Therefore, it is desirable to relate experimental and theoretical results to such parts of wave propagation line, which correspond to same phase angle intervals. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A 16 mHz Pc4 pulsation was recorded on March 17, 1998, in the prenoon sector of the Earths magnetosphere by the Equator-S satellite. The event is strongly localized in radial direction at approximately L = 5 and exhibits properties of a field line resonance such as an ellipticity change as seen by applying the method of the analytical signal to the magnetic field data. The azimuthal wave number was estimated as m 150. We discuss whether this event can be explained by the FLR mechanism and find out that the change in ellipticity is more a general feature of a localized Alfvén wave than indicative of a resonant process.  相似文献   

18.
Radio waves undergo angular scattering when they propagate through a plasma with fluctuating density. We show how the angular scattering coefficient can be calculated as a function of the frequency spectrum of the local density fluctuations. In the Earths magnetosheath, the ISEE 1–2 propagation experiment measured the spectral power of the density fluctuations for periods in the range 300 to 1 s, which produce most of the scattering. The resultant local angular scattering coefficient can then be calculated for the first time with realistic density fluctuation spectra, which are neither Gaussian nor power laws. We present results on the variation of the local angular scattering coefficient during two crossings of the dayside magnetosheath, from the quasi-perpendicular bow shock to the magnetopause. For a radio wave at twice the local electron plasma frequency, the scattering coefficient in the major part of the magnetosheath is b(2fp) 0.5–4 × 10–9 rad2/m. The scattering coefficient is about ten times stronger in a thin sheet (0.1 to IRE) just downstream of the shock ramp, and close to the magnetopause.  相似文献   

19.
We performed a statistical analysis of 290–500 keV ion data obtained by IMP-8 during the years 1982–1988 within the earth’s magnetosheath and analysed in detail some time periods withdistinct ion bursts. These studies reveal the following characteristics for magnetosheath 290–500 keV energetic ions: (a) the occurrence frequency and the flux of ions increase with increasing geomagnetic activity as indicated by the Kp index; the occurrence frequency was found to be as high as P ≥ 42% for Kp ≥ 2, (b) the occurrence frequency in the dusk magnetosheath was found to be slightly dependent on the local time and ranged between ≈30% and ≈46% for all Kp values; the highest occurrence frequency was detected near the dusk magnetopause (21 LT), (c) the high energy ion bursts display a dawn-dusk asymmetry in their maximum fluxes, with higher fluxes appearing in the dusk magnetosheath, and (d) the observations in the dusk magnetosheath suggest that there exist intensity gradients of energetic ions from the bow shock toward the magnetopause. The statistical results are consistent with the concept that leakage of magnetospheric ions from the dusk magnetopause is a semi-permanent physical process often providing the magnetosheath with high energy (290–500 keV) ions.  相似文献   

20.
We present the first electron time-of-flight measurements obtained with the Electron Drift Instrument (EDI) on Equator-S. These measurements are made possible by amplitude-modulation and coding of the emitted electron beams and correlation with the signal from the returning electrons. The purpose of the time-of-flight measurements is twofold. First, they provide the drift velocity, and thus the electric field, when the distance the electrons drift in a gyro period becomes sufficiently large. Second, they provide the gyro time of the electrons emitted by the instrument, and thus the magnitude of the ambient magnetic field, allowing in-flight calibration of the flux-gate magnetometer with high precision. Results of both applications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号