首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have obtained a two-dimensional velocity map in H of the inner 4 arc min zone of the Scd starburst galaxy NGC 6946 using the TAURUS interferometric spectrometer on the 2.5 m Isaac Newton Telescope. The major axis rotation curve is a cleen kinematic superposition of a central 1 kpc sphere with solid body rotation and a disc with density falling inversely with radius. We show clear evidence of symmetrical radial motions in the plane of the galaxy with velocity up to 100 km s–1 along axes offset from the major axis by up to ±30°. Along the bar at position angle 160° we see outflow out to –2 kpc and significant inflow beyond this radius. These velocity fields give clues to the nature of the starburst process within the central 1 kpc zone of the galaxy.  相似文献   

2.
Based on currently available observations of 28 maser sources in 25 star-forming regions with measured trigonometric parallaxes, proper motions, and radial velocities, we have constructed the rotation curve of the Galaxy. Taking different distances to the Galactic center R 0, we have estimated the peculiar velocity of the Sun, the angular velocity of Galactic rotation, and its three derivatives. For R 0 = 8 kpc, we have found the circular velocity of the Sun to be V 0 = 243 ± 16 km s−1, which corresponds to a revolution period of 202 ± 10 Myr. We have obtained the Oort constants A = 16.9 ± 1.2 km s−1 kpc−1 and B = −13.5 ± 1.4 km s−1 kpc−1. Our simulation of the influence of a spiral density wave has shown that the peculiar velocity of the Sun with respect to the local standard of rest and the component (V )LSR depend significantly on the Sun’s phase in the spiral wave.  相似文献   

3.
The Two Micron Galactic Survey (TMGS) is the most sensitive large scale point source near infrared survey of the Galactic Plane yet attempted. The Galactic plane has been drift-scanned in several regions over the areas -5° <l < 30°, |b | 15° and 30° <l < 180°, |b | 5°. The survey is complete in the areas covered to magnitudem k = +9.8. So far, a total area of 255 square degrees has been mapped and 500000 objects have been detected, the majority of these in the Galactic plane and with no visible counterparts. In this contribution we use data from the TMGS to probe the star distribution within the Galactic disk.  相似文献   

4.
We have tested the method of determining the solar Galactocentric distance R 0 and Galactic rotation velocity V 0 modified by Sofue et al. using near-solar-circle objects. The motion of objects relative to the local standard of rest has been properly taken into account. We show that when such young objects as star-forming regions or Cepheids are analyzed, allowance for the perturbations produced by the Galactic spiral density wave improves the statistical significance of the estimates. The estimate of R 0 = 7.25 ± 0.32 kpc has been obtained from 19 star-forming regions. The following estimates have been obtained from a sample of 14 Cepheids (with pulsation periods P > 5 d ): R 0 = 7.66 ± 0.36 kpc and V 0 = 267 ± 17 km s?1. We consider the influence of the adopted Oort constant A and the character of stellar proper motions (Hipparcos or UCAC4). The following estimates have been obtained from a sample of 18 Cepheids with stellar proper motions from the UCAC4 catalog: R 0 = 7.64 ± 0.32 kpc and V 0 = 217 ± 11 km s?1.  相似文献   

5.
We have checked the existence of a zone of avoidance oriented along the Galactic rotation axis in the globular cluster (GC) system of the Galaxy and performed a parametrization of this zone in the axisymmetric approximation. The possibility of the presence of such a structure in the shape of a double cone has previously been discussed in the literature. We show that an unambiguous conclusion about the existence of an axial zone of avoidance and its parameters cannot be reached based on the maximization of the formal cone of avoidance due to the discreteness of the GC system. The ambiguity allows the construction of the representation of voids in the GC system by a set of largest-radius meridional cylindrical voids to be overcome. As a result of our structural study of this set for northern and southern GCs independently, we have managed to identify ordered, vertically connected axial zones of avoidance with similar characteristics. Our mapping of the combined axial zone of avoidance in the separate and joint analyses of the northern and southern voids shows that this structure is traceable at |Z| ? 1 kpc, it is similar in shape to a double cone whose axis crosses the region of greatest GC number density, and the southern cavity of the zone has a less regular shape than the northern one. By modeling the distribution ofGalactocentric latitudes forGCs, we have determined the half-angle of the cone of avoidance α0 = 15?. 0?4?. 1 +2?. 1 and the distance to the Galactic center R 0 = 7.3 ± 0.5 kpc (in the scale of the Harris (1996) catalog, the 2010 version) as the distance from the Sun to the point of intersection of the cone axis with the center–anticenter line. A correction to the calibration of the GC distance scale obtained in the same version of the Harris catalog from Galactic objects leads to an estimate of R 0 = 7.2±0.5|stat ±0.3|calib kpc. The systematic error in R 0 due to the observational incompleteness of GCs for this method is insignificant. The probability that the zone of avoidance at the characteristics found is random in nature is ≤2%. We have revealed evidence for the elongation of the zone of avoidance in the direction orthogonal to the center–anticenter axis, which, just as the north–south difference in this zone, may be attributable to the influence of the Magellanic Clouds. The detectability of similar zones of avoidance in the GC systems of external galaxies is discussed.  相似文献   

6.
A diffusion model for the propagation of relativistic nuclear cosmic rays in the Galaxy is developed. The model has two nonstandard features: The escape of cosmic-ray particles from the Galaxy is simulated by a term in the diffusion equations, rather than the imposition of boundary conditions on the diffusion solution at the surface of the confinement region. And an age-dependent, locally-averaged effective gas distribution is employed in the diffusion equations. The model simulates free-particle outflow at the Galactic boundary. The model is fit to chemical composition data in the 0.3–5 GeV per nucleon range. It is then consistent with the large-scale Galactic -ray data, radio halo data, energy constraints on the assumed supernova sources, and, when extended to very high energies, cosmic-ray anisotrophy data. From the fit we conclude that the cosmic rays are confined in a large flattened or quasis-pherical halo with a scale height in the range 3–6 kpc and an average Galactic escape time of 108 yr.  相似文献   

7.
8.
The spiral structure of the inner parts of the Galaxy is studied using 21 cm line data and stellar data. To study the neutral hydrogen distribution in the galactic layer a parameter =(dV/dr) proportional to the mean densities is calculated using a first approximation for the velocity gradients due to differential rotation.The obtained distribution (R, Z) shows spiral features completely consistent with the early star distribution and with the Hii regions. The corrugation effect of the galactic layer is observed in all the studied zones in neutral hydrogen and in the distribution of the OB stars in the Carina zone.The pattern obtained indicates four spiral arms for the inner parts of the Galaxy, three of which are identified also in the stellar data (arms -I, -II, and -III) and the more distant -IV in Hii regions.The local arm according to the stellar data of Kilkennyet al. forms a feature completely similar to the arms -I and -II and there are no indications that this arm is a special material branch between two main spiral arms as has been supposed in order to conciliate the neutral hydrogen pattern with the stellar distribution.The pitch angles for the spiral arms are approximately 13°–17°.The observed wave form distribution of the hydrogen cloud layer is completely consistent with the theoretical predictions of Nelson (1976) but there are no indications of such an effect in the intercloud hydrogen. The corrugated cloud layer has a width of 100 pc, a wave amplitude of 70 pc, and a wavelength which grows with the galactic center distance (approx. 2 kpc in the zones next to the galactic nucleus and 2.6–3.0 kpc in the zones next to the Sun). To each wavelength correspond two spiral arms. The spiral features in our Galaxy show characteristics quite similar to the features in the Andromeda nebula, not only in the component materials (neutral hydrogen, Hii regions and possibly also dust and stars) but also in their kinematics.  相似文献   

9.
A new method to measure the epicycle frequency κ in the Galactic disc is presented. We make use of the large data base on open clusters completed by our group to derive the observed velocity vector (amplitude and direction) of the clusters in the Galactic plane. In the epicycle approximation, this velocity is equal to the circular velocity given by the rotation curve, plus a residual or perturbation velocity, of which the direction rotates as a function of time with the frequency κ. Due to the non-random direction of the perturbation velocity at the birth time of the clusters, a plot of the present-day direction angle of this velocity as a function of the age of the clusters reveals systematic trends from which the epicycle frequency can be obtained. Our analysis considers that the Galactic potential is mainly axis-symmetric, or in other words, that the effect of the spiral arms on the Galactic orbits is small; in this sense, our results do not depend on any specific model of the spiral structure. The values of κ that we obtain provide constraints on the rotation velocity of the disc; in particular, V 0 is found to be  230 ± 15 km s−1  even if the short scale  ( R 0= 7.5 kpc)  of the Galaxy is adopted. The measured κ at the solar radius is  43 ± 5 km s−1 kpc −1  . The distribution of initial velocities of open clusters is discussed.  相似文献   

10.
Based on the stellar proper motions of the TGAS (Gaia DR1) catalogue, we have analyzed the velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc. We have obtained four variants of kinematic parameters corresponding to different methods of calculating the distances from the parallaxes of stars measured with large relative errors. We have established that within the Ogorodnikov–Milne model changing the variant of distances affects significantly only the solar velocity components relative to the chosen centroid of stars, provided that the solution is obtained in narrow ranges of distances (0.1 kpc). The estimates of all the remaining kinematic parameters change little. This allows the Oort coefficients and related Galactic rotation parameters as well as all the remaining Ogorodnikov–Milne model parameters (except for the solar terms) to be reliably estimated irrespective of the parallax measurement accuracy. The main results obtained from main-sequence stars in the range of distances from 0.1 to 1.5 kpc are: A = 16.29 ± 0.06 km s?1 kpc?1, B = ?11.90 ± 0.05 km s?1 kpc?1, C = ?2.99 ± 0.06 km s?1 kpc?1, K = ?4.04 ± 0.16 km s?1 kpc?1, and the Galactic rotation period P = 217.41 ± 0.60 Myr. The analogous results obtained from red giants in the range from 0.2 to 1.6 kpc are: the Oort constants A = 13.32 ± 0.09 km s?1 kpc?1, B = ?12.71 ± 0.06 km s?1 kpc?1, C = ?2.04 ± 0.08 km s?1 kpc?1, K = ?2.72 ± 0.19 km s?1 kpc?1, and the Galactic rotation period P = 236.03 ± 0.98 Myr. The Galactic rotation velocity gradient along the radius vector (the slope of the Galactic rotation curve) is ?4.32 ± 0.08 km s?1 kpc?1 for main-sequence stars and ?0.61 ± 0.11 km s?1 kpc?1 for red giants. This suggests that the Galactic rotation velocity determined from main-sequence stars decreases with increasing distance from the Galactic center faster than it does for red giants.  相似文献   

11.
The Leiden/Dwingeloo Survey (LDS) offers new possibilities for analyzing Galactic Hi with an outstanding sensitivity. The survey data have been carefully corrected for side-lobe contamination of the antenna and for baseline effects. At present this survey is the most reliable database for analysis of faint, large-scale Hi features. Together with the longstanding dispute whether the Galactic halo is hot or cold, this motivated our investigations which are described in this paper.We have improved the stray-radiation correction procedure significantly by including reflections from the ground. Hi-gas with an unusually large velocity dispersion (LVD) is revealed when these enhanced LDS Data are massively integrated. Gaussian decomposition of more than 250 integrated profiles for b > 20° yields a complete set of 8500 Hi-components representing the north galactic sky on 10° × 10° fields. LVD components were found in every direction of the sky having a characteristic dispersion of 60 kms-1 and column densities of 1.4 · 1019 cm-2. We do not detect the Hi-gas which is associated with the "Lockman-Layer" ( 35 kms-1) and conclude therefore that his analysis was biased by instrumental effects. Correction of this bias in the Bell Survey data set makes the "Lockman-Layer" disappear and does show the LVD component reported here.The LVD gas exhibits minimal sub-rotation and extends several kpc into the Galactic halo. Its scale height is calculated to be 2 kpc and a non-uniform distribution with respect to the distance from the Galactic center is found. The distribution of the LVD gas is presented. Theoretical spectra are calculated from a simple model of the LVD halo and compared to the real data. The LVD gas seems to be a very sensitive indicator of violent disk phenomena. Two possible Galactic chimneys and a peculiar local velocity field are identified. Implications for the modelling of a Galactic halo with various components are discussed. Strict application of the principle, that the turbulent gas pressure plus magnetic and cosmic ray pressure equals the gravitational pull, leads to a stable halo, extending up to z = 3.3 kpc.  相似文献   

12.
We used the Revised Flat Galaxy Catalog (RFGC) to select 817 ultra-flat (UF) edge-on disk galaxies with blue and red apparent axial ratios of (a/b)B > 10.0 and (a/b)R > 8.5. The sample covering the whole sky, except the Milky Way zone, contains 490 UF galaxies with measured radial velocities. Our inspection of the neighboring galaxies around them revealed only 30 companions with radial velocity difference of | ΔV |< 500 kms?1 inside the projected separation of Rp < 250 kpc. Wherein, the wider area around the UF galaxy within Rp < 750 kpc contains no other neighbors brighter than the UF galaxy itself in the same velocity span. The resulting sample galaxies mostly belong to the morphological types Sc, Scd, Sd. They have a moderate rotation velocity curve amplitude of about 120 km s?1 and a moderate K-band luminosity of about 1010L. The median difference of radial velocities of their companions is 87 km s?1, yielding the median orbital mass estimate of about 5 × 1011M. Excluding six probable non-isolated pairs, we obtained a typical halo-mass-to-stellar-mass of UF galaxies of about 30, what is almost the same one as in the principal spiral galaxies, like M31 and M81 in the nearest groups. We also note that ultra-flat galaxies look two times less “dusty” than other spirals of the same luminosity.  相似文献   

13.
14.
Data on the positions, radial velocities, and proper motions of open star clusters and OB stars are used to obtain the rotation curve of the Galaxy fitted by a polynomial in inverse powers of the distances from the Galactic rotation axis. We determine the locations of the corotation region and the inner and outer Lindblad resonances using a previously estimated pattern speed. Based on data for objects of the Carina-Sagittarius and Orion arms, we have determined the distortion amplitudes of the velocity field of the Galactic disk, ?R = ?3.97±4.79 km s?1 and fθ=+13.27±2.57 km s?1.  相似文献   

15.
We exploit information, including velocities from the fifth data release of the RAdial Velocity Experiment (RAVE), to find evidence of the Lin–Shu type tightly wound spiral density waves in the nearby Galactic disk. The Kunder et al. (2017) catalogue of 471117 stars with derived spectrophotometric distances and line-of-sight velocities are explored to find the geometry and parameters of the velocity field in the extended solar neighborhood. Possible existence of noncircular systematic motions of selected 37,354 disk objects within 2 kpc from the Sun and 500 pc from the Galactic mid-plane together with the ordinary differential rotation are assumed. Both the pitch angle of spiral arms and the spatial location of the Sun within the density–wave pattern and the deviations of the motion of objects from the circular motion are calculated by fitting the stellar line-of-sight velocities in RAVE DR5 with the simplest linear perturbation density–wave model. Two radial wavelengths of the wave pattern of about 0.5 kpc and 1.5 kpc in the solar vicinity are found. We argue that the spiral structure of the Galaxy has an oscillating nature corresponding to a concept of the fairly unstable, low amplitude, tightly wound, and rigidly rotating density waves.  相似文献   

16.
The solar rotation rate at latitudes 0°, 15° and 30° has been inferred by averaging the results of 120 regions of 15°×15°, which have been studied over a total area of about 75° in latitude and 360° in longitude. A local helioseismology technique, the ring diagram analysis method, has been used to analyse the horizontal velocity vectors from about 0.95 R up to the surface. Our results are in very good agreement with those of other authors over most of the depth range. However, near the surface we find sharp local features which are not reported in other studies. The independent measurements of the rotation rate in the north and south hemispheres show asymmetries below 0.975 R . The data used are full-disc dopplergrams taken by Solar Oscillation Investigation/Michelson Doppler Imager (SOI/MDI) on board of the SOlar and Heliospheric Observatory (SOHO) during its first Dynamic Program, between 1996 May and June.  相似文献   

17.
18.
In the framework of the programme of studying the meridional section of the Galaxy (MEGA) the absolute proper motions of more than 11000 stars with respect to 3000 galaxies and their stellar magnitudes in the B, V Johnson system are determined in two sky regions near the North Galactic Pole (NGP) by means of Tautenburg Schmidt plates. The limiting and completing apparent stellar magnitudes are B = 20.4 and 18.3 mag, the overall and the investigated sky areas are 16.4 and 14.6 square degrees, respectively. Distances have been determined using the stellar magnitudes, colours, proper motions and reduced proper motions. Stellar kinematics, eccentricities of Galactic orbits, spatial distribution and changes of these characteristics with Z-distance from the Galactic plane are obtained up to 15 kpc. Four subsystems distinguished in the NGP direction, respectively with semithicknesses of 0.25, 0.38, 0.67, 1.48 kpc and density ellipsoid axial ratios of 0.09, 0.20, 0.28, 0.49 show mean velocities in the Galactic rotation direction relative to the LSR of 5.6 ± 0.6, − 11.0 ± 0.6, − 62.5 ± 1.2, − 181.6 ± 4.4 km/s, and ages of 0.1, 0.4, 0.9, 1 of the Galaxy age.  相似文献   

19.
We perform a kinematic analysis of the Hipparcos and TRC proper motions of stars by using a linear Ogorodnikov-Milne model. All of the distant (r>0.2 kpc) stars of the Hipparcos catalog have been found to rotate around the Galactic y axis with an angular velocity of M 13 ? =?0.36±0.09 mas yr?1. One of the causes of this rotation may be an uncertainty in the lunisolar precession constant adopted when constructing the ICRS. In this case, the correction to the IAU (1976) lunisolar precession constant in longitude is shown to be Δp1=?3.26±0.10 mas yr?1. Based on the TRC catalog, we have determined the mean Oort constants: A=14.9±1.0 and B=?10.8±0.3 km s?1 kpc?1. The component of the model that describes the rotation of all TRC stars around the Galactic y axis is nonzero for all magnitudes, M 13 ? =?0.86±0.11 mas yr?1.  相似文献   

20.
Based on published data, we have collected information about Galactic maser sources with measured distances. In particular, 44 Galactic maser sources located in star-forming regions have trigonometric parallaxes, proper motions, and radial velocities. In addition, ten more radio sources with incomplete information are known, but their parallaxes have been measured with a high accuracy. For all 54 sources, we have calculated the corrections for the well-known Lutz-Kelker bias. Based on a sample of 44 sources, we have refined the parameters of the Galactic rotation curve. Thus, at R 0 = 8kpc, the peculiar velocity components for the Sun are (U , V , W ) = (7.5, 17.6, 8.4) ± (1.2, 1.2, 1.2) km s?1 and the angular velocity components are ω 0 = ?28.7 ± 0.5 km s?1 kpc?1, ω 0′ = +4.17 ± 0.10 km s?1 kpc?2, and ω0″ = ?0.87 ± 0.06 km s?1 kpc?3. The corresponding Oort constants are A = 16.7 ± 0.6 km s?1 kpc?1 and B = ?12.0 ± 1.0 km s?1 kpc?1; the circular rotation velocity of the solar neighborhood around the Galactic center is V 0 = 230 ± 16 km s?1. We have found that the corrections for the Lutz-Kelker bias affect the determination of the angular velocity ω 0 most strongly; their effect on the remaining parameters is statistically insignificant. Within themodel of a two-armed spiral pattern, we have determined the pattern pitch angle $i = - 6_.^ \circ 5$ and the phase of the Sun in the spiral wave χ 0 = 150°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号