首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sapphirine occurs in the orthopyroxene-cordierite and feldspar-sillimanite granulites in the Sipiwesk Lake area of the Pikwitonei granulite terrain, Manitoba (97°40W, 55°05N). The orthopyroxene-cordierite granulites have extremely high Al2O3 (24.5 wt%) and MgO (24.6 wt%) contents and contain sapphirine (up to 69.2 wt% Al2O3), aluminous orthopyroxene (up to 8.93 wt% Al2O3), cordierite, spinel, phlogopite, and corundum. Sapphirine forms coronas mantling spinel and corundum. Corona sapphirine is zoned and its composition varies through the substitution (Mg, Fe, Mn) Si=2 Al as a function of the phases with which it is in contact. Textural and chemical relationships of sapphirine with coexisting phases indicate that spinel + cordierite reacted to form orthopyroxene + sapphirine under conditions of increasing pressure. Moreover, decreasing core to rim variation of Al2O3 in orthopyroxene porphyroblasts suggests decreasing temperature during sapphirine formation. On the basis of experimentally determined P-T stability of the assemblage enstatite + sapphirine + cordierite, and the Al content of hypothetical Fe2+-free orthopyroxene associated with sapphirine and cordierite, metamorphic temperatures and pressures are estimated to be 860–890° C and 3.0–11.2 kbar.In the feldspar-sillimanite granulites, sapphirine occurs as a relict phase mantled by sillimanite and/or by successive coronas of sillimanite and garnet. These textural relations suggest the reaction sapphirine + garnet + quartz = orthopyroxene + sillimanite with decreasing temperature. Compositions of minerals in the assemblage garnet-orthopyroxene-sillimanite-plagioclase-quartz, indicate metamorphic P-T conditions of 780–880° C and 9±1 kb.The metamorphic conditions estimated in this study suggest that the sapphirine bearing granulites in the Sipiwesk Lake area represent Archean lower crustal rocks. Their formation might be related to the crustal thickening processes in this area as suggested by Hubregtse (1980) and Weber (1983).  相似文献   

2.
The Archean Bird River greenstone belt (BRGB) is located on the southwestern edge of the Superior Province between the 3.2 Ga old Winnipeg River subprovince to the south and the metasedimentary belt of the English River subprovince (ERSP) to the north. This position between two major subprovinces makes the BRGB a primary target for investigating the geodynamic and kinematic evolution of a major structural boundary. New structural and geochronological data have allowed us to present an evolutionary framework for the southern boundary of the North Caribou superterrane. The BRGB underwent 3 main deformation phases. The D1 event took place ca. 2698 Ma and displays a north-side-up shearing. The D2 event, occurring at ca. 2684 Ma in a transpressive context, presents a complex structural pattern mixing vertical tectonics in the BRGB and strike-slip tectonics along the boundaries of the greenstone belt with other subprovinces. Between the BRGB and the ERSP, the 2832–2858 Ma old Maskwa batholith acted as a rigid passive block during the collision and marks the boundary between pure dextral strike-slip tectonics along his northern boundary with the ERSP and vertical south-side-up motion in the BRGB. The BRGB can be considered as a pop-up structure with anastomosed shear zones displaying different horizontal offset according to the orientation of the shear zones. The southern boundary with the Winnipeg River subprovince is represented by a sinistral south-side-up shear zone. The same pattern is found at the regional scale where major shear zones acted as a conjugate set in the horizontal plane. At ca. 2640 Ma, the D3 event occurred in a general dextral transpressive tectonic regime coeval with the emplacement of rare-elements pegmatitic plutons in a still hot (400–500 °C) country rock. The geodynamical and mechanical significance of the partitioning between pure strike-slip tectonics in the English River subprovince and vertical motion in the BRGB can be explained by the rheological behaviour of a hot and weak lithosphere undergoing transpressive strain. The structural framework of the BRGB is the result of strong interactions between hot and weak domains, coeval with widespread plutonism, and a rigid older domain (Maskwa batholith) during the D2 transpressive event.  相似文献   

3.
This study considers the potential of using the U-Pb dating of garnet for determining quantitative P-T-t paths for the late Archean metamorphism in the Pikwitonei granulite domain. Garnets for U-Pb dating were selected mainly from samples that also provide information on pressure and temperature. The garnets used for dating were clear and free of any visible inclusions. Pb concentrations range from 63 ppb to 966 ppb and U from 136 ppb to 1143 ppb. The measured 206Pb/204Pb ratios range from 52.8 to 529.4. The ages are generally discordant with U/Pb ages that may lie above or below concordia. The discordance is caused by a recent disturbance of the U/Pb ratio in the garnets as indicated by replicate analyses on the same garnet separates that reproduce 207Pb/206Pb ages well within analytical uncertainty and in most cases within ±1.5 Ma at 2600–2750 Ma. High grade metamorphism continued over a period of at least one hundred million years, but the garnet-K-feldspar Pb-Pb ages suggest that, during this time, garnet growth has been favored during three distinct periods in the Cauchon Lake area: 2700–2687 Ma 2660–2637 Ma 2605–2591 Ma The ca. 2695 Ma garnet ages from Cauchon Lake date the time of melting and staurolite breakdown during prograde metamorphism, the ca. 2640 Ma ages date the time of extensive migmatization and the last period of metamorphic garnet growth, the ca. 2600 Ma ages date the time of crystallization of igneous garnet in late granitic intrusions. Peak metamorphism occurred around 2640 Ma followed by the intrusions of pegmatites starting at 2629 Ma. The Pb-Pb ages for garnet are similar to the U-Pb ages for zircon that date a leucocratic mobilizate (2695 Ma), a plagioclaseamphibole mobilizate (2637 Ma) and pegmatite (2598 Ma) (Heaman et al. 1986 a; Krogh et al. 1986; this study). Xenocrysts of garnet from 2600 Ma old graphic granites give minimum ages of 2984 Ma and 2741 Ma which are minima for the times of garnet growth in the source of the granites. The agreement of the zircon and garnet ages suggests that the metamorphism may have been punctuated by events that led to the development of melts or encouraged mineral growth at specific times. If so, the prograde and retrograde paths of metamorphism in the area may have contained minor excursions in pressure, temperature or fluid fugacities. In the Natawahunan Lake area some 50 km northwest of Cauchon Lake, garnet growth associated with the prograde breakdown of staurolite occurred at ca. 2744–2734 Ma. This suggests that a similar style of metamorphism may have occurred earlier in the Natawahunan Lake area than at Cauchon Lake area, or higher grades of metamorphism were reached earlier and were of longer duration associated with the somewhat greater depths in the Natawahunan Lake area. These results indicate the these garnets, which are 0.1–1 cm in diameter, have maintained closed system behavior for U and Pb at peak metamorphic conditions, i.e. temperatures up to 800° C and pressures of 7.5 kb.  相似文献   

4.
Surface and borehole core samples from the Lac du Bonnet granite, Manitoba, Canada, have been analysed for major element concentrations,Fe3+/Fe (total) ratios, rare earth element (REE) content and actinide isotopic abundances. This work forms part of the geological investigations of the Canadian Nuclear Fuel Waste Management Program, performed by Atomic Energy of Canada Limited (AECL). The study attempts to understand the history of, and processes governing, mobilisation of elements and naturally occurring radionuclides during high- and low-temperature alteration events in fluid-bearing fractures in the granite.One surface sample and two core samples (from ∼ 150 m and 730 m) are each in contact with fractures in the granite and show evidence of alteration events that penetrated the rock matrix over distances of at least 3 cm. Loss of Ca and Na is seen in cores from a depth of ∼ 150 m from the highly altered, hematite-rich rock adjacent to sub-horizontal fracture zones at the Underground Research Laboratory (URL) of AECL, near Lac du Bonnet. In contrast, K, Fe,Fe3+/Fe and U concentrations increase towards the fracture surface due to formation of illite and association of U with hematite and the illite. At the fracture surface, U continues to increase, but Fe and theFe3+/Fe ratio decrease indicating Fe removal by reduction. The REE also show some enrichment in more altered rock at intermediate depths, but the total REE concentration is lower than in the surface and deep core samples. No clear trends are visible for parent and fracture-surface REE in surface and deep core samples, however.Disequilibrium values of234U/238U and 230Th/234U ratios in surface and intermediate depth core samples indicate that U has been mobilised in recent geological time (the last Ma), but Th has remained relatively immobile. High Th/U and230Th/234U ratios in surface samples are indicative of rapid leaching of U but little isotopic fractionation, probably within the last 105 a. Apparently unaltered rock, several centimetres distant from the fracture in surface and intermediate- depth samples, has lost appreciable U, but evidence from U-series disequilibrium studies suggests that this process occurred more than one million years ago, perhaps during deuteric or hydrothermal alteration. Core from a fracture at depth in the granite shows little hematite or clay formation and lacks evidence of REE and recent or ancient actinide mobilisation.The U-series results are correlated with the observed concentrations and isotope activity ratios of U in groundwaters sampled from the same or adjacent fractures. Analyses of samples of highly altered rubble recovered from centre portions of fracture zones at the URL show both excesses and deficiencies of234U and230Th in neighbouring locations, possibly due to the presence of a redox front whose position is controlled by modern groundwater composition.The implications of these results are discussed for the concept of disposal of nuclear fuel waste at depth in plutonic rock on the Canadian Shield.  相似文献   

5.
Archean shoshonitic lamprophyre dikes are prevalent along majortranslithospheric structures that demark tectonostratigraphicterranes in the Abitibi greenstone belt of the Superior Province.The lamprophyres post-date volcanism, tonalitic batholiths,deformation, and metamorphism of the terranes, and are mostprominently developed in trans-tensional graben, where theyare associated with molasse sediments and an alkaline suiteof plutons, stocks, and trachytes. Mineralogically, the dikesare characterized by zoned phiogopite or hornblende phenocrystsand/or diopsidic pyroxene, restriction of feldspar to the groundmass,globular segregations of K-feldspar and calcite, olivine ‘pilite’,and accessory Ti-magnetite, Cr-spinel, apatite, titanite, andSr-rich calcite; crustal xenoliths are sporadically present. Compositionally, weakly altered primititive dikes have contentsof SiO2 (41–48 wt.%), TiO2 (06–11 wt.%), P2O5(041–076 wt.%), Cr (258–915 ppm), Co (36–84ppm), Ni (159–368 ppm), and Sc (15–32 ppm), mg-numbers(72–79), and K2O/Na2O ratios (10–43) similar tothose of Phanerozoic shoshonitic lamprophyres. The primitivedikes are also characterized by extreme enrichments of K, Rb,Ba, Cs, U, and Th, enhanced light rare earth elements (REE),and fractionated REE patterns [Lan=33–274; (La/Yb)n=16–87].On mid-ocean ridge basalt (MORB) normalized plots the dikesshow coherent patterns, with (1)enrichment of K, Rb, and Barelative to Sr and LREE, (2) variable enrichments of Rb andBa relative to K, (3) troughs at Ta–Nb and Ti, and (4)variable negative P and positive Sm anomalies. Compositionalvariations of lamprophyre suites within restricted areas areinterpreted to reflect melting of compositionally heterogeneoussources, variable degrees of assimilation–fractional crystallization,and mixing of distinct batches of lamprophyric magmas. Primary18O values of the magmas are close to 63 as given by resistantpyroxene; these are 18O-relative to MORB, but comparable withPhanerozoic alkali basalts and lamprophyres. Mica, clinopyroxene,hornblende, and feldspar do not retain magmatic equilibriumfractionations for oxygen isotopes. A concordant U–Pbage of 26742 Ma was obtained from titanite, similar to theages of shoshonitic plutons in the same area. The lamprophyredikes possess a total range of Nd between 041 and 211(1),and define a distinct field in common with other late Archeanshoshonites on an f(Sm/Nd) vs. Nd plot. Pyroxenes yield a low87Sr/86Sr(0701102), whereas whole-rock Rb-Sr isotope systematicsare disturbed. Lamprophyres are not known from pre-27-Ga terranes. Their compositionand inferred geodynamic setting is consistent with an originin a depleted mantle wedge, enriched in large ion lithophileelements (LILE) and LREE during subduction by slab and sediment(low Sr/Nd) dehydration. Partial melting may have been triggeredby rebound and decompression that followed accretional collisionof two allochthonous greenstone terranes at a plate margin.The onset of shoshonitic magmatism at 27 Ga coincides withthe transition from tonalite–trondhjemite–granodiorite(TTG) dominated magmatism with high (La/Yb)n and low Yb (slabmelting) to mantle-wedge derived granites featuring lower (La/Yb)nand higher Yb (slab dehydration), owing to decreasing heat flow.Accretion of greenstone belts, and their buoyant harzburgiticroots, consolidated a thick subcontinental mantle lithosphereby 27 Ga, which was subsequently the source of Jurassic kimberlitesthat intruded the persistently reactivated Archean translithosphericstructures.  相似文献   

6.
A combined Lu-Hf and U-Th-Pb isotopic study was made of 25 zircons and 2 whole rocks from the late Archean crust (2,888-2,668 Ma) in the southern Superior Province, Canada. The relative abundances of U, Th, Lu and Hf in zircons from the low grade Michipicoten and Gamitagama greenstone belts show variable patterns which in part reflect the bulk compositional differences of their parent rocks. Zircons from the high grade lower crustal regions adjacent to these belts (Kapuskasing Structural Zone) are distinguished from the low grade zircons by their strong depletions of Lu and Hf. The low Hf contents imply that the growth of metamorphic zircon involves a significant fractionation of the Zr/Hf ratio.Initial Hf isotope ratios for Hf in zircons from the low grade rocks are correlated with silica enrichment of their host rocks. e Hf varies from +9.2 to –1.3 and data from similar rock types exhibit correlations of e Hf with time. Whole rock basalt analyses yield e Hf values of +8.7 and +11.3 suggesting their derivation from a depleted mantle. The basalt data fall on an evolution trend which implies that differentiation from a chondritic mantle occurred at 3,100-2,900 Ma. Low e Hf values (–1.3 to +1.4) for rhyolites and granites are consistent with a derivation involving remelting of old crust similar to a 2,888 Ma granite with e HF of +0.5. Significantly higher values (+1.4 to +3.9) are found in zircons from 2,748-2,682 Ma dacites and tonalites suggesting that their parent rocks had higher Lu/Hf ratios. This may indicate that their parent rocks were mafic. However, there is some evidence that the possible lower crustal source reservoirs of these rocks may have undergone processes early in their histories which increased their Lu/ Hf ratios. This would give rise to the higher e Hf values observed in their derivatives.  相似文献   

7.
The postglacial history of Lake Manitoba has been deduced from a study of the changes in physical, mineralogical, and chemical variables in sediment cores collected from the lake. Six lithostratigraphic units are recognized in the South Basin of the lake. Weakly developed pedogenic zones, reflecting dry or extremely low water conditions in the basin, separate five of these six units. The initial phase of lacustrine sedimentation in the Lake Manitoba basin began shortly after 12,000 yr B.P. as water was impounded in front of the receding glacier to form Lake Agassiz. By 11,000 yr ago, continued retreat of the ice sheet opened lower outlets to the east and much of Lake Agassiz drained, including the Lake Manitoba basin. Water levels again rose at 9900 yr B.P., but by about 9200 yr B.P. the South Basin was again dry. For the next 4700 yr there was an alternation of wet and dry conditions in the basin in response to the interaction of a warmer and drier climate and differential crustal rebound of the basin. About 4500 yr ago a new phase of Lake Manitoba sedimentation was initiated when the Assiniboine River began to discharge into the South Basin. The Assiniboine River was diverted out of the Lake Manitoba watershed about 2200 yr ago. Erosion and redistribution of the sandy deltaic sediments deposited by the Assiniboine River has created the barrier beach that now separates the extensive marsh to the south of the lake from the main lake.  相似文献   

8.
Lake Manitoba, North America's thirteenth largest lake, occupies a glacier-scoured basin in south-central Manitoba. Despite its large size, the lake is extremely shallow with a mean depth of 4.5 m. The lake can be subdivided into two connected but distinctly different basins: a small, irregular-shaped North Basin and a much larger and smoother South Basin. Most of the water inflow is from the Waterhen River (42% of the inflow) and from precipitation directly on the lake's surface (40%), while nearly 60% of the outflow is by evaporation. Lake Manitoba water is alkaline and brackish with the salinity dominated by sodium and chloride ions. The surficial offshore deposits of the main South Basin of the lake consist mainly of silt and clay-sized sediments composed of detrital components (clay minerals, quartz, carbonates, and feldspars) and endogenic/authigenic components (carbonates, sulfides, and organic matter). In addition to these modern sediments, several areas of relict fluvial-shoreline sand and till deposits occur in the South Basin. The lacustrine processes presently operating in Lake Manitoba reflect the influence of (1) the extreme shallow depth of the lake, (2) the basin morphology, and (3) the water chemistry. In addition, land clearing and increased watershed drainage have resulted in substantially increased sedimentation rates in the South Basin during the past century.  相似文献   

9.
王贤觉  熊小林  P.Cerny 《地球化学》2002,31(5):481-486
锡锰钽矿(wodginite)理想式为MnSnTa2O8,Z=4,其结构为锡铁钽矿(ixiolite)结构的有序化形式。它是钽的主要工业矿物,是高度分异演化伟晶岩的标志矿物之一。在加拿大红十字湖地区锂云母-透锂长石伟晶岩脉中发现了这一钽矿物。矿物为黑褐色,呈半自形,颗粒达0.2mm,分布于由锂云母钠长石构成的条带中,与之共生的是一套典型的、高演化的花岗伟晶岩矿物组合。锡锰钽矿具有Mn/Fe、Sn/Ti、Ta/Nb比值高,杂质少的特点。矿物平均分子式为:Mn1.00(Sn0.64Ta0.24Ti0.04Mn0.04Zn0.02Fe0.01)0.99(Ta1.69Nb0.31)2.00O8;晶胞参数a=0.9534nm,b=1.1482nm,c=0.5123nm,β=91°07',V=0.5607nm3。依据矿物β>91°、V>0.560nm3、对偶面网221与221具强分裂衍射双峰、I021/I220为0.19和Mn/(Fe+Mn)≈1等特征,在锡锰钽矿与锡铁钽矿所构成的同质多像、有序-部分有序-无序这样一个连续系列中,本区所产锡锰钽矿属有序端员矿物,其阳离子在八面体中分布的有序度约为95%。在钽资源的寻找和开发利用中,应重视含锡锰钽矿的锂云母-透锂长石伟晶岩脉。  相似文献   

10.
Holocene carbonate sedimentation in Lake Manitoba, Canada   总被引:1,自引:0,他引:1  
W. M. LAST 《Sedimentology》1982,29(5):691-704
The carbonate mineral suite of the modern offshore bottom sediment of the South Basin of Lake Manitoba consists mainly of high magnesian calcite and dolomite with minor amounts of low-Mg calcite and aragonite. The high-Mg calcite is derived from inorganic precipitation within the water column in response to supersaturation brought about by high levels of organic productivity in the basin. Both dolomite and pure calcite are detrital in origin, derived from erosion of the surrounding carbonate-rich glacial deposits. Aragonite, present only in trace amounts in the offshore sediments, is bioclastic in origin. The upward increase in the amount of magnesian calcite in the post-glacial sediment record is attributed to increasing photosynthetic utilization of CO2 in the lake. Stratigraphic variation in the amount of magnesium incorporated into the calcite lattice is interpreted as reflecting a variable magnesium input to the lake from ground water and surface runoff, and possibly variable calcium removal in the precipitating lake water. The effects of long-term chemical weathering at the source and size segregation explain the changes in dolomite content throughout the section.  相似文献   

11.
Contributions to Mineralogy and Petrology - Adakitic geochemical features characterize the Desliens suite of pre-tectonic diorite to tonalite sills intruded into volcanogenic greywackes of the...  相似文献   

12.
Amphibole-bearing, Late Archean (2.73–2.68 Ga) granitoids of the southern Superior Province are examined to constrain processes of crustal development. The investigated plutons, which range from tonalite and diorite to monzodiorite, monzonite, and syenite, share textural, mineralogical and geochemical attributes suggesting a common origin as juvenile magmas. Despite variation in modal mineralogy, the plutons are geochemically characterized by normative quartz, high Al2O3 (> 15 wt%), Na-rich fractionation trends (mol Na2O/K2O >2), low to moderate Rb (generally<100 ppm), moderate to high Sr (200–1500 ppm), enriched light rare earth elements (LREE) (CeN generally 10–150), fractionated REE (CeN/YbN 8–30), Eu anomaly (Eu/Eu*) 1, and decreasing REE with increasing SiO2. The plutons all contain amphibole-rich, mafic-ultramafic rocks which occur as enclaves and igneous layers and as intrusive units which exhibit textures indicative of contemporaneous mafic and felsic magmatism. Mafic mineral assemblages include: hornblende + biotite in tonalites; augite + biotite ± orthopyroxene ± pargasitic hornblende or hornblende+biotite in dioritic to monzodioritic rocks; and aegirine-augite ± silicic edenite ± biotite in syenite to alkali granite. Discrete plagioclase and microcline grains are present in most of the suites, however, some of the syenitic rocks are hypersolvus granitoids and contain only perthite. Mafic-ultramafic rocks have REE and Y contents indicative of their formation as amphibole-rich cumulates from the associated granitoids. Some cumulate rocks have skeletal amphibole with XMg(Mg/(Mg+ Fe2+)) indicative of crystallization from more primitive liquids than the host granitoids. Geochemical variation in the granitoid suites is compatible with fractionation of amphibole together with subordinate plagioclase and, in some cases, mixing of fractionated and primitive magmas. Mafic to ultramafic units with magnesium-rich cumulus phases and primitive granitoids (mol MgO/ (MgO+0.9 FeOTOTAL) from 0.60 to 0.70 and CT >150 ppm) are comagmatic with the evolved granitoids and indicate that the suites are mantle-derived. Isotopic studies of Archean monzodioritic rocks have shown LREE enrichment and initial 143Nd/144Nd ratios indicating derivation from mantle sources enriched in large ion lithophile elements (LILE) shortly before melting. Mineral assemblages record lower PH2O with increased alkali contents of the suites. This evidence, in conjunction with experimental studies, suggests that increased alkali contents may reflect decreased PH2O during mantle melting. These features indicate that 2.73 Ga tonalitic rocks are derived from more hydrous mantle sources than 2.68 Ga syenitic rocks, and that the spectrum of late Archean juvenile granitoid rocks is broader than previously recognized. Comparison with Phanerozoic and recent plutonic suites suggests that these Archean suites are subduction related.  相似文献   

13.
The Mulcahy Lake gabbro is an Archean layered intrusion of tholeiiticbulk composition located in the Wabigoon subprovince. The intrusionis 6 km thick at the thickest and is exposed over an area of63 km2. It intrudes basaltic to siliceous volcanics of the CrowLake-Savant Lake greenstone belt and is intruded by the Atikwabatholith. Zircon U-Pb data indicate crystallization at 27322+1·0/–0·9m·y. Principal phases are plagioclase, orthopyroxene, augite (andpigeonite in iron-rich rocks), olivine, hornblende and magnetite.Olivine is confined to several horizons. Apatite and then zirconare prominent accessory phases at advanced stages of fractionation.Plagioclase, pyroxenes and olivine are cumulate phases. Hornblendeis invariably an intercumulus phase. Magnetite is ubiquitousthroughout the intrusion, generally as a cumulate phase, andforms centimeter thick layers in fractionated rocks. Fractionationfollowed a tholeiitic trend with iron enrichment in the liquid. The intrusion is divided into lower, mixed, middle, upper andmarginal zones. The lower and middle zones are 2·0 and2·5 km thick respectively. The upper zone is approximately1 km thick, and the marginal zone is measured in hundreds ofmeters. A 200 m thick mixed zone is interposed between the lowerand middle zones. The base of the lower zone consists of ultramaficunits containing olivine of Fo82. The top of the zone has olivineof Fo28. Fractionation of the lower zone, from the floor up,was interrupted by the introduction of pristine liquid whichmixed with more dense and cooler residual liquid in the chamberto form the mixed zone. Further introduction of several minorpulses of liquid constructed the lower part of the middle zone.The upper part of the middle zone was constructed from a majorpulse of liquid plus several minor pulses each of which is representedby reversals in cryptic layering. The upper zone consists ofultramafic to iron-rich gabbro cumulates formed by cooling throughthe roof plus horizons formed by influx of pristine liquid.Marginal zone rocks represent cooling through the walls of theintrusion. Rhythmic layering is well developed in lower and middle zonecumulates. Petrofabric data show that orthopyroxene has a lineationin the plane of layering and parallel to structures suggestiveof flow. Plagioclase laths also have a preferred orientationin many cumulates and in unlayered gabbros as well. Flow, possiblylaminar, of liquid-crystal material is suggested and may belinked to the ultimate development of layering. Pressure during the course of crystallization probably was greaterthan 2 and less than 5 kb. Temperatures estimated from pyroxenesvaried from approximately 1200 to 1000 °C.fo2, is not wellconstrained but was sufficient to allow the formation of thinlocal magnetite cumulates late in the crystallization. The primarymelt was hydrous as indicated by the presence of hornblende.It is very unlikely that the melt was saturated with water duringcrystallization of the cumulate phases.  相似文献   

14.
The 2685–2752 Ma old granite-greenstone crust in the Rainy Lake area, Ontario, consists of metaigneous and metasedimentary rocks that range in composition from tholeiite to monzogranite and include anorthosite, trachyandesite, monzodiorite and high-silica rhyodacite. Major element, rare earth and other trace element data are the basis for modelling the formation of the crust by melting of large-ionlithophile element enriched and unenriched mantle, by melting of basalt at mantle to crustal levels and by melting of monzodiorite and tonalite at crustal levels.

All metaigneous rocks lie on a 143Nd/144Nd vs. 147Sm/144Nd isochron with an age of 2737 ±42 Ma and an initial 143Nd/144Nd of 0.509178 ±33 (εNd = +1.9). This age is consistent with U-Pb zircon ages, which suggests the Nd isotopic system has been unaffected since the crust-forming events. The positive initial εNd's are further evidence for time-averaged depletion in Sm/Nd relative to CHUR for the Archean mantle. The similarity of the initial Nd isotopic composition for both mantle-derived and crustally-derived rocks suggests rapid recycling of crustal components, which were previously derived from depleted mantle sources.

Initial 143Nd/144Nd ratios on individual rocks range from εNd = +3.3 to εNd = −0.4. Younger granitoids have lower εNd values (+1.5 to −0.1) relative to tholeiites and monzodiorites crystallized from mantle-derived melts (+3.3 to +1.0). Thus, incorporation of slightly older crust (ca. 100–200 Ma) in some of the granitoid source areas is possible. Mantle-derived rocks form an isochron of 2764 ±58 Ma that represents a minimum age for enrichment processes in the mantle sources for the Rainy Lake area. Consideration of data from the Abitibi belt suggests such enrichment processes in the mantle may have preceded crust-forming events in a wide area of the Superior Province, perhaps by as much as 50–70 Ma.  相似文献   


15.
16.
Volcanic suites from Wawa greenstone belts in the southern Superior Province comprise an association of typical late Archean arc volcanic rocks including adakites, magnesian andesites (MA), niobium-enriched basalts (NEB), and ‘normal’ tholeiitic to calc-alkaline basalts to rhyolites. The adakites represent melts from subducted oceanic crust and all other suites were derived from the mantle wedge above the subducting oceanic lithosphere. The magnesian andesites are interpreted to be the product of hybridization of adakite melts with arc mantle wedge peridotite. The initial ?Hf values of the ∼2.7 Ga Wawa adakites (+3.5 to +5.2), magnesian andesites (+2.6 to +5.1), niobium-enriched basalts (+4.4 to +6.6), and ‘normal’ tholeiitic to calc-alkaline arc basalts (+5.3 to +6.4) are consistent with long-term depleted mantle sources. The niobium-enriched basalts and ‘normal’ arc basalts have more depleted ?Hf values than the adakites and magnesian andesites. The initial ?Nd values in the magnesian andesites (+0.4 to +2.0), niobium-enriched basalts (+1.4 to +2.4), and ‘normal’ arc tholeiitic to calc-alkaline basalts (+1.6 to +2.9) overlap with, but extend to lower values than, the slab-derived adakites (+2.3 to +2.8). The lower initial ?Nd values in the mantle-wedge-derived suites, particularly in the magnesian andesites, are attributed to recycling of an Nd-enriched component with lower ?Nd to the mantle wedge. As a group, the slab-derived adakites plot closest to the 2.7 Ga depleted mantle value in ?Nd versus ?Hf space, additionally suggesting that the Nd-enriched component in the mantle wedge did not originate from the 2.7 Ga slab-derived melts. Accordingly, we suggest that the enriched component had been added to the mantle wedge at variable proportions by recycling of older continental material. This recycling process may have occurred as early as 50-70 Ma before the initiation of the 2.7 Ga subduction zone. The selective enrichment of Nd in the sources of the Superior Province magmas can be explained by experimental studies and geochemical observations in modern subduction systems, indicating that light rare earth elements (e.g., La, Ce, Sm, Nd) are more soluble than high field strength elements (e.g., Zr, Hf, Nb, Ta) in aqueous fluids that are derived from subducted slabs. As a corollary, we suggest that the recycled Nd-enriched component was added to the mantle source of the Wawa arc magmas by dehydration of subducted sediments.  相似文献   

17.
The paper presents U–Pb ages for zircon, titanite, andmonazite, and Hf isotopic data for zircon, from the rocks oftwo magmatic suites occurring mostly in the Archean Uchi Subprovinceand partly in the neighbouring Berens River and English Riversubprovinces of the northwestern Superior Province, Ontario.These data, together with observations on the morphologies and,where evident, the inheritance of the zircon crystals, constrainthe nature of the sources of the magmas and provide a recordof various crustal processes in their evolution. The older of the two magmatic suites formed at 2744–2740Ma along segments of a common arc system. The suite consistsof (1) several trondhjemitic to granodioritic plutons, withHf values of 6•1, intruded into older crust and possiblyformed from magma produced by partial melting of subducted,juvenile oceanic crust; (2) an assemblage of dacitic pyroclasticvolcanic rocks, with Hf values of 3•2–4•0, associatedwith tholeiitic basalts and probably derived from magma meltedfrom arc mantle; and (3) a bimodal assemblage of tholeiiticbasalts, rhyolites, and porphyries, also with Hf values of 6•1,associated with a volcanogenic massive sulphide deposit andapparently formed by differentiation of mantle-derived basalticmelts at shallow levels in an extensional back-arc setting. The second magmatic suite, formed between 2702 and 2693 Ma,comprises late orogenic plutons and batholiths of dioritic todominantly granodioritic composition. The characteristics ofthese intrusions are consistent with a process combining meltingof a metasomatized mantle source and subsequent fractional crystallizationof the derived magmas at shallow depths. However, most of thestudied occurrences show evidence of crustal contamination throughvarious combinations of assimilation of lower-crustal material,assimilation of underthrust sedimentary rocks, and contaminationby wall rock materials during the latest stages in the emplacementof the plutons. The involvement of crustal material is indicatedby the presence of zircon xenocrysts and by Hf values rangingfrom 1•4 to 4•4. Only one intrusion, with an Hf valueof 5•0 and no xenocrystic zircon, appears to have escapedwidespread contamination, perhaps because the ascent of itsmagma was facilitated by a crustal-scale fracture system.  相似文献   

18.
The central Wabigoon subprovince of the Superior Province, likemost plutonic domains within Archean cratons, is dominated bygranitoid rocks of the tonalite–trondhjemite–granodiorite(TTG) series. Heterogeneous <2·83–2·74Ga tonalite gneisses and foliated tonalite to granodiorite units,emplaced at 2·722–2·709 Ga, exhibit initial  相似文献   

19.
吉林桦甸地区太古宙麻粒岩变质作用的PTt轨迹   总被引:1,自引:0,他引:1  
本区太古代的表壳岩系(基性麻粒岩及富铝片麻岩等)经历了麻粒岩相变质作用,根据矿物共生组合及其转化关系可将形成麻粒岩的变质作用划分为早期角闪岩相阶段(T=575-600℃,P=0.59GPa)、峰期麻粒岩相阶段(T=835℃,P=0.85GPa)和晚期角闪岩相阶段(T=620℃,P=0.70GPa),其PT_t轨迹为逆时针方向。峰期升温升压过程及晚期近等压冷却过程与IBC型PT_t轨迹相似,反映其形成于岛弧或大陆边缘构造环境。  相似文献   

20.
The geochemistry of the Leisure Bay Formation, Natal Metamorphic Province suggests that its protoliths were greywackes, pelites and arkoses that were deposited in an oceanic island arc environment. These rocks contain the mineral assemblage biotite + hypersthene + cordierite (with hercynite inclusions) + garnet + quartz + feldspar. Numerous generations of garnet genesis are evident from which a long history of metamorphism can be interpreted. M1 involved syn-D1 high temperature/low pressure metamorphism (4kb and >850oC) and dehydration melting to produce essentially anhydrous assemblages particularly in the vicinity of, and probably related to the intrusion of the Munster Suite sills. The inclusions of hercynite in cordierite and the garnet + quartz symplectites after hypersthene + plagioclase (550oC and 5kb) suggests isobaric cooling after M1. This indicates an anticlockwise P-T loop related to the early intrusion of subduction related calc-alkaline magmatic rocks. M2 involved syn-D2 dehydration melting of hydrous assemblages possibly related to the emplacement of many A-type rapakivi charnockite granitoids, which provided heat and loading. The D2 tectonism post-dated all lithologies in the region, except for syn- to late-D2 granitoid plutons, and is interpreted as a transpressional tectonothermal reworking of pre-existing (Proterozoic) crust at 1030Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号