首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. T. Stewart 《Solar physics》1984,92(1-2):343-350
The homology of seven successive type II solar radio bursts, which occurred at the times of flares from an active region near the solar west limb on 1980, July 27–29, is described, together with evidence for coronal mass outflows accompanying these bursts. It is argued that homologous type II bursts imply that the corona is restructured in a similar manner by successive coronal transients.  相似文献   

2.
We report detailed observations of the herringbone (HB) fine structure on type II solar radio bursts. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. We determine the characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. Our data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. We conclude that HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.Now at: Department of Physics and Astronomy, University of Iowa, U.S.A.Now at Anglo-Australian Observatory, Sydney, Australia.  相似文献   

3.
The association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H, the green coronal line, and white-light coronagraphs is examined. Rather than identifying fast-moving optical coronal transients with outward-travelling shock waves that generate type II radio bursts, as has been suggested in some earlier papers, we suggest that, for the most part, such transients should probably be identified with piston-type phenomena well behind the shock. We then discuss a general model, consisting of three main velocity regimes, in which we relate type II radio bursts and coronal shocks to optically-observed ejecta.  相似文献   

4.
5.
The relationship between the proton intensity in the interplanetary space and radio bursts of type II for 78 proton events for the period of 1989–2005 is studied based on the data of the Radio Solar Telescope Network. Two families of events have been revealed in plots describing the dependence of the intensity of protons with different energies and the rate of the frequency drift of meter-decameter radio bursts. This suggests the generation of shock waves both in the region of flare energy release and at the fronts of coronal mass ejection.  相似文献   

6.
We present statistics relating shock-associated (SA) kilometric bursts (Cane et al., 1981) to solar metric type II bursts. An SA burst is defined here to be any 1980 kHz emission temporally associated with a reported metric type II burst and not temporally associated with a reported metric type III burst. In this way we extend to lower flux densities and shorter durations the original SA concept of Cane et al. About one quarter of 316 metric type II bursts were not accompanied by any 1980 kHz emission, another quarter were accompanied by emission attributable to preceding or simultaneous type III bursts, and nearly half were associated with SA bursts. We have compared the time profiles of 32 SA bursts with Culgoora Observatory dynamic spectral records of metric type II bursts and find that the SA emission is associated with the most intense and structured part of the metric type II burst. On the other hand, the generally poor correlation found between SA burst profiles and Sagamore Hill Observatory 606 and 2695 MHz flux density profiles suggests that most SA emission is not due to energetic electrons escaping from the microwave emission region. These results support the interpretation that SA bursts are the long wavelength extension of type II burst herringbone emission, which is presumed due to the shock acceleration of electrons.Also: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, U.S.A.  相似文献   

7.
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable.  相似文献   

8.
Takakura  Tatsuo  Yousef  Shahinaz 《Solar physics》1974,39(2):451-458
The harmonic ratios of a large sample of inverted-U bursts are found to be smaller at the turning frequency than at the starting frequency. Ratios <2.0 are explained by postulating that the lowest fundamental frequencies emitted are prevented from escaping from the corona by an evanescent region between the source and the observer. This concept is used to construct a source model for inverted-U bursts where the density is lower inside a magnetic flux tube than it is outside.  相似文献   

9.
The comparison of solar radio type III bursts measured at 169 MHz with K corona observations leads to the conclusion that about 75% of the active regions over which type III bursts occur are associated with low density coronal structures. The comparison with X-ray maps of the solar disk shows that all these regions are located in low intensity regions.It is concluded that the idea generally accepted that the type III bursts are associated with dense coronal structures and travel in these structures is not at all proven for a large number of cases.  相似文献   

10.
Both individual and collective motions of electron and proton streams in the current sheet which is thought to exist near the center of a coronal streamer are considered. Unlike previous analyses, closed field lines which must exist when finite conductivity is taken into account as well as a B ø field due to solar rotation are present. It is shown on the basis of individual particle motions that neither electrons nor protons could move in most of the sheet in the manner required to explain type III bursts since they are effectively tied to the closed field lines.The possibility that the stream could collectively drag the closed field lines out with itself is considered. It is shown that impossibly high densities are required for electron streams and improbable densities for proton streams. Thus the particles responsible for type III bursts cannot travel in the densest part of a coronal streamer, but presumably travel close to this region. Moreover, the current sheet cannot act as a channeling agent to help explain the transverse coherency of type III burst sources.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
An investigation is made to determine the positional relation between the leading edge of the coronal mass ejection (CME) and the source region of associated solar type II radio bursts. A preliminary relation between the optical and radio activity was first established for each event using projected starting times and positional data. Height - time plots were then deduced for the radio activity using radiospectrograph observations in conjunction with a variety of coronal density models. These plots were then compared with height - time plots for the leading edge of the associated CME events, which has been observed with the SOLWIND experiment aboard the P78-1 satellite. In 31 well-observed events a total of 13 (42%) had type II bursts which could confidently be placed near the leading edge of the CME. In these events the density model which gave the best agreement between CME and type II positions was five times the Saito (1970) quiet Sun model. The existence of these closely related events was further confirmed by direct positional comparisons for the event of 1979, May 4. In a further nine events the type II burst was seen within the CME but was located well behind the leading edge, suggesting that they were created by a blast wave. The remaining nine events had height - time plots which could not be accurately compared. The observations are discussed in relation to models for the CME and type II activity. We suggest that the type II is generated when the shock wave is formed within the closed field structure near the leading edge of the CME or, in the case of a blast wave, interacts with closed fields in the body of the transient.  相似文献   

12.
The dispersion properties of the sausage eigenmodes of oscillations in a thin magnetic flux tube are numerically analyzed in terms of ideal magnetohydrodynamics (MHD). The period of the modes accompanied by the emission of MHD waves into the surrounding medium, which leads to acoustic damping of oscillations, is determined by the radius of the tube, not by its length. The dissipation of the sausage oscillations in comparatively high (?0.7R ) and tenuous (?6 × 108 cm?3) coronal loops is considered. Their Q factor has bound found to be determined by the acoustic damping mechanism. The ratio of the plasma densities outside and inside the loop and the characteristic height of the emission source have been estimated by assuming the quasi-periodic pulsations of meter-wavelength radio emission to be related to the sausage oscillations.  相似文献   

13.
Solar type III radio bursts are an important diagnostic tool in the understanding of solar accelerated electron beams. They are a signature of propagating beams of nonthermal electrons in the solar atmosphere and the solar system. Consequently, they provide information on electron acceleration and transport, and the conditions of the background ambient plasma they travel through. We review the observational properties of type III bursts with an emphasis on recent results and how each property can help identify attributes of electron beams and the ambient background plasma. We also review some of the theoretical aspects of type III radio bursts and cover a number of numerical efforts that simulate electron beam transport through the solar corona and the heliosphere.  相似文献   

14.
A model for the solar Type V event is developed. This model assumes that the basic difference between Type III and Type V bursts is the evolution of the electron beam. For a Type V this beam rapidly elongates, so that it takes progressively longer times to pass higher plasma levels. Physical process influencing the beam development, including Coulomb collisions, non-linear interactions with Langmuir waves and wave-particle scattering from various hydromagnetic wave modes is discussed. The model is compared with previously derived models and with observations.Operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

15.
We investigate the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. We show that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21% of all type II bursts show herringbone, about 60% of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. We also show that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. We argue that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.  相似文献   

16.
The propagation of the weak MHD fast-mode shock emitted into the corona by flares at their explosive phase is computer-simulated. It is shown as the result that the shock wave is refracted towards the low Alfvén velocity regions pre-existing in the corona, and the strength of the shock, which is otherwise weak, is drastically enhanced on encountering low- V A regions due to the focussing effect by refraction and also due to the lowered propagation velocity of the shock in such regions. It is expected that electron acceleration takes place in such a drastic strengthening of the shock, leading to the local excitation of plasma waves and eventually to the occurrence of radio bursts at such locations. Such locations of shock strength enhancement, when computed by using HAO realistic models of coronal density and magnetic field of the day of certain type II burst events, actually coincide roughly with the observed positions of type II bursts. Peculiar configurations of type II burst sources as well as their occurrence even beyond the horizon of the responsible flare are explained consistently by the large scale refraction and the local enhancement of the shock due to the global and local distribution of Alfvén velocity in the corona. A unified interpretation is given for the occurrence of type II bursts and Moreton's wave phenomena, and also the relation of our MHD fast-mode disturbance with other flare-associated dynamical phenomena is discussed.  相似文献   

17.
We present here a model, based on observations, for the magnetic-field equilibrium of a cool coronal loop. The pressure structure, taken from the Harvard/Skylab EUV data, is used to modify the usual force-free-field form in quasi-cylindrical symmetry. The resulting field, which has the same direction but different strength, is calculated and its variation displayed. Finally, localized interchange stability is evaluated and discussed, as the first step in a subsequent complete magnetohydrodynamic-stability analysis.  相似文献   

18.
We present the second part of a complete theory for the plasma and field structure of a cool coronal arch, corresponding to those observed in the EUV from Skylab. The global magneto-hydrodynamic (MHD) stability of a previously described equilibrium-loop model is evaluated, and compared with that of an unmodified ambient force-free field. The influence of the photospheric boundary condition is also evaluated, producing a specification of stability limits which depend on the relative field and plasma pressures and scale widths. The resulting restrictions on the allowable field configuration of a coronal loop are then compared with observed values. The implications of this general method for deducing small-scale coronal magnetic-field structure from the measured plasma profile of an emissive feature are also described.  相似文献   

19.
In order to explain a fine structure of parallel ridges in stationary type IV continua, the emission due to the coupling of electrostatic upper hybrid waves and Bernstein waves at the sum frequency of the upper hybrid and harmonics of the gyro frequency has been calculated. If the energy density of these electrostatic waves is of the order of 10-3 times the thermal energy density, then the observed zebra pattern can be emitted by a region with a diameter of 103 km.  相似文献   

20.
The flares associated with reported type II bursts from 1964–1973 (hereafter abbreviated source-flares) are analyzed with respect to their importance, duration, and heliographic distribution. The source-flares for type II bursts generally are normal to small in area and normal to brilliant in intensity; however, they have slightly longer durations than would be expected from flares with such small areas. Flares associated with type II bursts are distributed uniformly east and west of the central meridian. This implies that type II bursts cannot be narrow-beamed, radially-propagating radio emitters. The latitude of the occurrence of source-flares shows a drift with time that is not significantly different from that of sunspots. The drift rate is a maximum during the period of maximum solar activity. The heliographic distribution of source-flares shows large-scale organization into similarly shaped regions (source-regions) separated by 180° of longitude in each polar hemisphere. The shape of the source-regions differs between the northern and the southern hemispheres. The source-regions exhibit growth and motion characteristics which suggest that their development is due partly to the effects of differential rotation. An analysis of the plage regions which are associated with source-flares shows that relatively few plages ever produce type II bursts, yet certain plages produce type II bursts repeatedly. One active region produced type II bursts on six consecutive disc passages. Since the source-regions for type II bursts are large-scale, persistent solar features that show motion and development related to the solar cycle, an evaluation of the distinctive fluid motion characteristics of these regions appears to be an important step in the determination of specific environmental configurations which can produce solar shock waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号