首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coherent synchrotron deceleration of 100 keV electrons is proposed as the mechanism by which type II and III solar radio bursts are generated. This mechanism directly excites the transverse electromagnetic radiation by a linear mechanism at the relativistic electron cyclotron frequency and at the first harmonic thereof if the energy spread of the exciting component is sufficiently narrow. Higher cyclotron harmonics are excluded by the energy spread in the 100 keV exciting electron component. This mechanism appears to fit the observational data concerning these emissions some-what better than the existing theory based on the non-linear interaction of electrostatic plasma waves.  相似文献   

2.
本文介绍了云南天文台四波段(1.42,2.13,2.84和4.26GHz)太阳射电高时间分辩率同步观测得到的五个微波II型爆发事件,它们具有宽频带、长和短寿命、内向和外向快速频漂等特征.观测事例表明,非热电子束引起的等离子体辐射和电子回旋脉泽辐射两种机制都可能发生.这些观测特征既不完全同于米波—分米波II型爆发,也不完全同于微波高频段II型爆发,说明在微波低频段可能存在二重性或过渡现象  相似文献   

3.
The planetary radio astronomy experiment on the Voyager spacecraft observed several type II solar radiobursts at frequencies below 1.3 MHz; these correspond to shock waves at distances between 20R and 1 AU from the Sun. We study the characteristics of these bursts and discuss the information that they give on shock waves in the interplanetary medium and on the origin of the high energy electrons which give rise to the radioemission. The relatively frequent occurence of type II bursts at large distances from the Sun favors the hypothesis of the emission by a longitudinal shockwave. The observed spectral characteristics reveal that the source of emission is restricted to only a small portion of the shock. From the relation between type II bursts, type III bursts and optical flares, we suggest that some of the type II bursts could be excited by type III burst fast electrons which catch up the shock and are then trapped.  相似文献   

4.
We investigate the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. We show that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21% of all type II bursts show herringbone, about 60% of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. We also show that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. We argue that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.  相似文献   

5.
Some successful features of the theory of radiation from plasma instabilities in space plasmas are reviewed, with emphasis on plasma emission in type III solar radio bursts due to the bump-in-tail instability, and planetary radio emissions due to loss-cone driven electron cyclotron maser emission. The emission occurs in sporadic, localized bursts, and the theory for the instability needs to be combined with some statistical ideas to model the observed emissions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The basic idea of the paper is to present transparently and confront two different views on the origin of large-scale coronal shock waves, one favoring coronal mass ejections (CMEs), and the other one preferring flares. For this purpose, we first review the empirical aspects of the relationship between CMEs, flares, and shocks (as manifested by radio type II bursts and Moreton waves). Then, various physical mechanisms capable of launching MHD shocks are presented. In particular, we describe the shock wave formation caused by a three-dimensional piston, driven either by the CME expansion or by a flare-associated pressure pulse. Bearing in mind this theoretical framework, the observational characteristics of CMEs and flares are revisited to specify advantages and drawbacks of the two shock formation scenarios. Finally, we emphasize the need to document clear examples of flare-ignited large-scale waves to give insight on the relative importance of flare and CME generation mechanisms for type II bursts/Moreton waves.  相似文献   

7.
An analytically derived distribution function of reflected and accelerated electrons at a nearly perpendicular shock is presented. Then this distribution in a simplified form is introduced into a 1.5-D relativistic electromagnetic particle-in-cell (PIC) model and a generation of waves is studied. Numerical modeling shows not only a generation of Langmuir and high-frequency electromagnetic waves as expected, but also an efficient generation of whistler waves. Their role in emission processes of type II solar radio bursts is discussed.  相似文献   

8.
The plasma mechanism of radio emission generation in an inhomogeneous medium is investigated. In the model under study, the electron beam with loss-cone distribution generates upper-hybrid waves that, in turn, are transformed into radio emission. It is shown that the influence of the plasma density inhomogeneity limits the plasma waves’ intensity considerably due to variation in their wave vector. The results are used to interpret the intermediate drift (IMD) bursts. A model is proposed in which these bursts are reflections of propagating small-scale (with amplitudes of about 1% and sizes of hundreds of kilometers) magnetohydrodynamic (MHD) disturbances of magnetic tubes. It is shown that this model allows us to explain the spectral parameters of the bursts in question. At present, the lack of precise and independent data about the magnetic field does not allow us to decide definitively between the existing models (whistler or MHD waves) of the IMD bursts; nevertheless, if the proposed model is correct, it can be used to determine the characteristics of the coronal MHD waves.  相似文献   

9.
太阳射电爆发(Solar Radio Burst, SRB)是太阳高能电子与背景等离子体相互作用产生的感应辐射现象,其多样的动力学谱类型及其复杂的精细结构反映了辐射源区磁等离子体结构状态丰富的物理信息,而相关辐射机制则是解读相关物理信息的关键工具.长期以来,在SRB辐射机制的研究中一直存在着争议不决的两种主要机制,即等离子体辐射机制和电子回旋脉泽(Electron Cyclotron Maser, ECM)辐射机制.近年来,针对传统的ECM辐射机制应用到SRB现象时遇到的一些主要困难,发展了由幂律谱电子低能截止驱动和包含快电子束自生阿尔文波效应的新型ECM驱动模型,并成功应用于解释各类不同SRB动力学谱的形成机制.基于这些新型的ECM辐射模型,系统地总结了ECM辐射机制在各种不同类型SRB现象中的应用,并对它们不同动力学谱结构的形成给出了一致统一的物理解释.  相似文献   

10.
Y. Ma  R. X. Xie  M. Wang 《Solar physics》2006,238(1):105-115
Detailed statistics and analysis of 264 type III bursts observed with the 625–1500 MHz spectrograph during the 23rd solar cycle (from July 2000 to April 2003) are carried out in the present article. The main statistical results are similar to those of microwave type III bursts presented in the literature cited, such as the correlation between type III bursts and flares, polarization, duration, frequency drift rate (normal and reverse slopes), distribution of type III bursts and frequency bandwidth. At the same time, the statistical results also point out that the average values of the frequency drift rates and degrees of polarization increase with the increase in frequency and the average value of duration decreases with the increase in frequency. Other statistical results show that the starting frequencies of the type III bursts are mainly within the range from 650 to 800 MHz, and most type III bursts have an average bandwidth of 289 MHz. The distributions imply that the electron acceleration and the place of energy release are within a limited decimetric range. The characteristics of the narrow bandwidth possibly involve the magnetic configuration at decimetric wavelengths, the location of electron acceleration in the magnetic field nearto the main flare, the relevant runaway or trapped electrons, or the coherent radio emission produced by some secondary shock waves. In addition, the number of type III bursts with positive frequency drift rates is almost equal to that with negative frequency drift rates. This is probably explained by the hypothesis that an equal number of electron beams are accelerated upwards and downwards within the range of 625 to 1500 MHz. The radiation mechanism of type III bursts at decimetric wavelengths probably includes these microwave and metric mechanisms and the most likely cause of the coherent plasma radiation are the emission processes of the electron cyclotron maser.  相似文献   

11.
Large-scale, wave-like disturbances in extreme-ultraviolet (EUV) and type II radio bursts are often associated with coronal mass ejections (CMEs). Both phenomena may signify shock waves driven by CMEs. Taking EUV full-disk images at an unprecedented cadence, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory has observed the so-called EIT waves or large-scale coronal propagating fronts (LCPFs) from their early evolution, which coincides with the period when most metric type II bursts occur. This article discusses the relation of LCPFs as captured by AIA with metric type II bursts. We show examples of type II bursts without a clear LCPF and fast LCPFs without a type II burst. Part of the disconnect between the two phenomena may be due to the difficulty in identifying them objectively. Furthermore, it is possible that the individual LCPFs and type II bursts may reflect different physical processes and external factors. In particular, the type II bursts that start at low frequencies and high altitudes tend to accompany an extended arc-shaped feature, which probably represents the 3D structure of the CME and the shock wave around it, and not just its near-surface track, which has usually been identified with EIT waves. This feature expands and propagates toward and beyond the limb. These events may be characterized by stretching of field lines in the radial direction and may be distinct from other LCPFs, which may be explained in terms of sudden lateral expansion of the coronal volume. Neither LCPFs nor type II bursts by themselves serve as necessary conditions for coronal shock waves, but these phenomena may provide useful information on the early evolution of the shock waves in 3D when both are clearly identified in eruptive events.  相似文献   

12.
We present statistics relating shock-associated (SA) kilometric bursts (Cane et al., 1981) to solar metric type II bursts. An SA burst is defined here to be any 1980 kHz emission temporally associated with a reported metric type II burst and not temporally associated with a reported metric type III burst. In this way we extend to lower flux densities and shorter durations the original SA concept of Cane et al. About one quarter of 316 metric type II bursts were not accompanied by any 1980 kHz emission, another quarter were accompanied by emission attributable to preceding or simultaneous type III bursts, and nearly half were associated with SA bursts. We have compared the time profiles of 32 SA bursts with Culgoora Observatory dynamic spectral records of metric type II bursts and find that the SA emission is associated with the most intense and structured part of the metric type II burst. On the other hand, the generally poor correlation found between SA burst profiles and Sagamore Hill Observatory 606 and 2695 MHz flux density profiles suggests that most SA emission is not due to energetic electrons escaping from the microwave emission region. These results support the interpretation that SA bursts are the long wavelength extension of type II burst herringbone emission, which is presumed due to the shock acceleration of electrons.Also: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, U.S.A.  相似文献   

13.
It is shown that narrow-band radio bursts of right- and left-hand circular polarizations from the Sun and flare stars can be produced via nonlinear conversion of Langmuir waves into high-frequency electromagnetic electron cyclotron waves near the plasma frequency by coupling to low-frequency electromagnetic cyclotron waves such as Alfvén-ion cyclotron or magnetosonic-whistler waves.  相似文献   

14.
We study interplanetary (IP) solar radio type II bursts from 2011?–?2014 in order to determine the cause of the intense enhancements in their radio emission. Type II bursts are known to be due to propagating shocks that are often associated with fast halo-type coronal mass ejections (CMEs). We analysed the radio spectral data and the white-light coronagraph data from 16 selected events to obtain directions and heights for the propagating CMEs and the type II bursts. CMEs preceding the selected events were included in the analysis to verify whether CME interaction was possible. As a result, we were able to classify the events into five different groups. 1) Events where the heights of the CMEs and type II bursts are consistent, indicating that the shock is located at the leading front of the CME. The radio enhancements are superposed on the type II lanes, and they are probably formed when the shock meets remnant material from earlier CMEs, but the shock continues to propagate at the same speed. 2) Events where the type II heights agree with the CME leading front and an earlier CME is located at a height that suggests interaction. The radio enhancements and frequency jumps could be due to the merging process of the CMEs. 3) Events where the type II heights are significantly lower than the CME heights almost from the start. Interaction with close-by streamers is probably the cause for the enhanced radio emission, which is located at the CME flank region. 4) Events where the radio enhancements are located within wide-band type II bursts and the causes for the radio enhancements are not clear. 5) Events where the radio enhancements are associated with later-accelerated particles (electron beams, observed as type III bursts) that stop at the type II burst emission lane, and no other obvious reason for the enhancement can be identified.Most of the events (38%) were due to shock–streamer interaction, while one quarter of the events was due to possible CME–CME interaction. The drift rates, bandwidth characteristics, or cross-correlations of various characteristics did not reveal any clear association with particular category types. The chosen atmospheric density model causes the largest uncertainties in the derived radio heights, although in some cases, the emission bandwidths also lead to relatively large error margins.Our conclusion is that the enhanced radio emission associated with CMEs and propagating shocks can have different origins, depending on their overall configuration and the associated processes.  相似文献   

15.
It is argued (a) that the onset times of type III radio emission and of the streaming electrons implies that type III bursts in the interplanetary medium are generated predominantly at the fundamental, (b) that in view of recent observations of ion-sound waves in the interplanetary medium the theory of the generation of the bursts should be revised to take account of these waves, and (c) the revised theory favours fundamental emission. A detailed discussion of the effect of ion-sound waves on type III bursts is given. The most important results are: (1) Ion-sound waves cause enhanced (over scattering off thermal ions) fundamental emission. (2) Second harmonic emission is also enhanced for T e> 5 × 105 K, e.g., low in the corona, but is suppressed for T e< 5 × 105 K, e.g., in the interplanetary medium. (3) The bump-in-the-tail instability for Langmuir waves can be suppressed by the presence of ion-sound waves; it may be replaced by an analogous instability in which fundamental transverse waves are generated directly, with no associated second harmonic, but there are unresolved problems with theory for this process. (4) Very low frequency ion-sound waves can scatter type III radiation. (5) Although the ion-sound waves which have been observed are at too high a frequency to be relevant for these processes, it seems likely that ion-sound waves of the required frequencies are present and do play important roles in the generation of type III bursts.  相似文献   

16.
We study solar radio type II bursts combining with Wind/WAVES type II bursts and coronal mass ejections (CMEs). The aim of the present work is to investigate the effectiveness of shocks to cause type II bursts in the solar corona and the interplanetary space. We consider the following findings. The distribution of the cessation heights of type II emission is confined to a rather narrow range of height than the distribution of the heights of start frequencies. This is suggestive of the presence of a gradient for the Alfvén speed from the heliocentric height of ∼1.4 solar radii. The range of the kinetic energy of CMEs associated with coronal type II emission taken together with the suggested computation method and the Alfvén speed gradient, indicates the limit to the height up to which type II emission could be expected. This height is ∼2 solar radii from the center of the Sun. Further, the large time gap between the cessation time and heights of coronal type II emission and the commencement time and heights of most of the IP type II bursts do not account for the difference between the two heights and the average shock speed. Also, there is clear difference in the magnitude of the kinetic energies and the distinct characteristics of the CMEs associated with coronal and IP type II bursts. Hence, we suggest that in most instances the coronal type II bursts and IP type II bursts occur due to distinct shocks. We also address the question of the origin of type II bursts and discuss the possible explanation of observed results.  相似文献   

17.
Type III solar radio bursts are investigated by modelling the propagation of the electron beam and the generation and subsequent propagation of waves to the observer. Predictions from this model are compared in detail with particle, Langmuir wave, and radio data from the ISEE-3 spacecraft and with other observations to clarify the roles of fundamental and harmonic emission in type III radio bursts. Langmuir waves are seen only after the arrival of the beam, in accord with the standard theory. These waves persist after a positive beam slope is last resolved, implying that sporadic positive slopes persist for some time, unresolved but in accord with the predictions of stochastic growth theory. Local electromagnetic emission sets in only after Langmuir waves are seen, in accord with the standard theory, which relies on nonlinear processes involving Langmuir waves. In the events investigated here, fundamental radiation appears to dominate early in the event, followed and/or accompanied by harmonic radiation after the peak, with a long-lived tail of multiply scattered fundamental or harmonic emission extending long afterwards. These results are largely independent of, but generally consistent with, the conclusions of earlier works.  相似文献   

18.
The foreshock region of a CME shock front, where shock accelerated electrons form a beam population in the otherwise quiescent plasma is generally assumed to be the source region of type II radio bursts. Nonlinear wave interaction of electrostatic waves excited by the beamed electrons are the prime candidates for the radio waves’ emission. To address the question whether a single, or two counterpropagating beam populations are a requirement for this process, we have conducted 2.5D particle-in-cell simulations using the fully relativistic ACRONYM code. Results show indications of three-wave interaction leading to electromagnetic emission at the fundamental and harmonic frequency for the two-beam case. For the single-beam case, no such signatures were detectable.  相似文献   

19.
Recent observations demonstrate that some type II radio bursts (a) occur below the top of coronal white light loops in the early stages and (b) travel faster than white light transients when both data sources are recorded concurrently. These characteristics are examined with numerical simulations of a coronal transient in combination with the suggestion by Holman and Pesses (1983) that shock drift acceleration may be the originating mechanism for type II emission. The simulated angular relation between the transient shock normal and the upstream magnetic field, along with requirements on this orientation in order that shock drift be effective, lead naturally to the observed spatial relationship (in the lower corona) and relative velocities of white-light transients and type II bursts. The large type II velocities do not directly correspond to either material or shock motion, but are due to the production of emission at different locations along the shock surface. In addition, the model coincides with the hypothesis that the shocks generating the coronal type II emission also produce interplanetary SA (shock-accelerated) events.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
W. K. Yip 《Solar physics》1973,30(2):513-526
The radio emissions caused by electron streams in a non-isothermal plasma are studied quantitatively. It is proposed that conversion of the stream-excited plasma waves into electromagnetic waves by scattering on the thermal fluctuations at nonisothermal sonic oscillation frequency is the origin of the emission of the split-pair burst near the plasma frequency. The occurrence of the split-pair bursts near the second harmonic of the plasma frequency can be due to combination scattering of the stream-excited plasma waves by electron density fluctuations which are produced by the scattered plasma waves. With a streamer model in which the electron densities are two times those in Newkirk's model, both the observed frequency splitting and the rate of drift of the split pair can be explained as the result of plasma radiation caused by a stream of 10 keV electrons. A tentative model for the split-pair emission is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号