首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known 'narrow-line' Seyfert 1 in the 2–10 keV band. The measured X-ray spectrum is dominated by a steep (Γ≈2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and edge features and an additional 'soft excess' below ∼1.5 keV. The energy of the iron K-edge indicates the presence of highly ionized material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O  viii Ly α and O  viii recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1–2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than 'normal' Seyfert 1s of comparable luminosity, increasing by a factor of ∼50 per cent in 1.6 h, with no measurable lag between the 0.5–2 keV and 3–12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.  相似文献   

3.
We present the first imaging X-ray observation of the highly inclined  ( i = 78°)  Sab Seyfert 2 galaxy NGC 6810 using XMM–Newton , which reveals soft X-ray emission that extends out to a projected height of ∼7 kpc away from the plane of the galaxy. The soft X-ray emission beyond the optical disc of the galaxy is most plausibly extraplanar, although it could instead come from large galactic radius. This extended X-ray emission is spatially associated with diffuse Hα emission, in particular with a prominent 5-kpc-long Hα filament on the north-west of the disc. A fraction ≲35 per cent of the total soft X-ray emission of the galaxy arises from projected heights  | z | ≥ 2 kpc  . Within the optical disc of the galaxy the soft X-ray emission is associated with the star-forming regions visible in ground-based Hα and XMM–Newton optical monitor near-UV imaging. The temperature, supersolar α-element-to-iron abundance ratio, soft X-ray/Hα correlation, and X-ray to far-infrared (FIR) flux ratio of NGC 6810 are all consistent with local starbursts with winds, although the large base radius of the outflow would make NGC 6810 one of the few 'disc-wide' superwinds currently known. Hard X-ray emission from NGC 6810 is weak, and the total   E = 2–10 keV  luminosity and spectral shape are consistent with the expected level of X-ray binary emission from the old and young stellar populations. The X-ray observations provide no evidence of any active galactic nucleus activity. We find that the optical, IR and radio properties of NGC 6810 are all consistent with a starburst galaxy, and that the old classification of this galaxy as a Seyfert 2 galaxy is probably incorrect.  相似文献   

4.
We have observed four low-luminosity active galactic nuclei (AGNs) classified as type 1 Low-Ionization Nuclear Emission-Line Regions (LINERs) with the X-Ray Telescope (XRT) and the Ultraviolet–Optical Telescope (UVOT) onboard Swift , in an attempt to clarify the main powering mechanism of this class of nearby sources. Among our targets, we detect X-ray variability in NGC 3998 for the first time. The light curves of this object reveal variations of up to 30 per cent amplitude in half a day, with no significant spectral variability on this time-scale. We also observe a decrease of ∼30 per cent over 9 d, with significant spectral softening. Moreover, the X-ray flux is ∼40 per cent lower than observed in previous years. Variability is detected in M81 as well, at levels comparable to those reported previously: a flux increase in the hard X-rays (1–10 keV) of 30 per cent in ∼3 h and variations by up to a factor of 2 within a few years. This X-ray behaviour is similar to that of higher luminosity, Seyfert-type objects. Using previous high-angular-resolution imaging data from the Hubble Space Telescope ( HST ), we evaluate the diffuse UV emission due to the host galaxy and isolate the nuclear flux in our UVOT observations. All sources are detected in the UV band, at levels similar to those of the previous observations with HST . The XRT (0.2–10 keV) spectra are well described by single power laws and the UV-to-X-ray flux ratios are again consistent with those of Seyferts and radio-loud AGNs of higher luminosity. The similarity in X-ray variability and broad-band energy distributions suggests the presence of similar accretion and radiation processes in low- and high-luminosity AGNs.  相似文献   

5.
Results of ASCA and ROSAT observations of the Seyfert 1 galaxy RX J0437.4−4711 are presented. The X-ray continuum spectrum can be described by the sum of a power law with photon index 2.15 ± 0.04 and a soft emission component characterized by a blackbody with temperature 29 ± 2 eV. The total luminosity of the soft component is larger than that of the power-law component if the power law is cut off around a few hundred keV. A weak absorption edge with τ = 0.26 ± 0.13 at the rest-frame energy of E  = 0.83 ± 0.05 keV and an Fe Kα line with EW = 430 ± 220 eV at an energy E  = 6.47 ± 0.15 keV are also detected. The X-ray flux showed a 47 per cent increase between two ASCA observations 4 months apart, but no spectral variability was seen. We argue that reprocessing of the hard X-ray emission cannot produce all the soft X-ray emission, since the total luminosity of the soft component is larger than that of the integrated power-law component. Similarities with some stellar black hole candidates are briefly discussed.  相似文献   

6.
We discuss ROSAT HRI X-ray observations of 33 very nearby galaxies, sensitive to X-ray sources down to a luminosity of approximately 1038 erg s−1. The galaxies are selected from a complete, volume-limited sample of 46 galaxies with     for which we have extensive multiwavelength data. For an almost complete subsample with     (29/31 objects) we have HRI images. Contour maps and source lists are presented within the central region of each galaxy, together with nuclear upper limits where no nuclear source was detected. Nuclear X-ray sources are found to be very common, occurring in ∼35 per cent of the sample. Nuclear X-ray luminosity is statistically connected to host galaxy luminosity – there is not a tight correlation, but the probability of a nuclear source being detected increases strongly with galaxy luminosity, and the distribution of nuclear luminosities seems to show an upper envelope that is roughly proportional to galaxy luminosity. While these sources do seem to be a genuinely nuclear phenomenon rather than nuclear examples of the general X-ray source population, it is far from obvious that they are miniature Seyfert nuclei. The more luminous nuclei are very often spatially extended, and H  ii region nuclei are detected just as often as LINERs. Finally, we also note the presence of fairly common superluminous X-ray sources in the off-nuclear population – out of 29 galaxies we find nine sources with a luminosity greater than 1039 erg s−1. These show no particular preference for more luminous galaxies. One is already known to be a multiple SNR system, but most have no obvious optical counterpart and their nature remains a mystery.  相似文献   

7.
We use morphological information of X-ray selected active galactic nuclei (AGN) hosts to set limits on the fraction of the accretion density of the Universe at   z ≈ 1  that is not likely to be associated with major mergers. Deep X-ray observations are combined with high-resolution optical data from the Hubble Space Telescope in the All-wavelength Extended Groth strip International Survey, Great Observatories Origins Deep Survey (GOODS) North and GOODS South fields to explore the morphological breakdown of X-ray sources in the redshift interval  0.5 < z < 1.3  . The sample is split into discs, early-type bulge-dominated galaxies, peculiar systems and point sources in which the nuclear source outshines the host galaxy. The X-ray luminosity function and luminosity density of AGN at   z ≈ 1  are then calculated as a function of morphological type. We find that disc-dominated hosts contribute  30 ± 9  per cent to the total AGN space density and  23 ± 6  per cent to the luminosity density at   z ≈ 1  . We argue that AGN in disc galaxies are most likely fuelled not by major merger events but by minor interactions or internal instabilities. We find evidence that these mechanisms may be more efficient in producing luminous AGN     compared to predictions for the stochastic fuelling of massive black holes in disc galaxies.  相似文献   

8.
We present high-resolution images of the Faraday rotation measure (RM) structure of the radio galaxy PKS 1246−410 at the centre of the Centaurus cluster. Comparison with Hα-line and soft X-ray emission reveals a correspondence between the line-emitting gas, the soft X-ray emitting gas, regions with an excess in the RM images and signs of depolarization. Magnetic field strengths of 25 μG, organized on scales of ∼1 kpc and intermixed with gas at a temperature of 5 × 106 K with a density of ∼0.1 cm−3, can reproduce the observed RM excess, the depolarization and the observed X-ray surface brightness. This hot gas may be in pressure equilibrium with the optical line-emitting gas, but the magnetic field strength of 25 μG associated with the hot gas provides only 10 per cent of the thermal pressure and is therefore insufficient to account for the stability of the line-emitting filaments.  相似文献   

9.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

10.
The gas temperature in the cores of many clusters of galaxies drops inward by about a factor of 3 or more within the central 100-kpc radius. The radiative cooling time drops over the same region from 5 or more Gyr down to below a few 108 yr. Although this indicates that cooling flows are taking place, XMM-Newton spectra show no evidence for strong mass cooling rates of gas below  1–2 keV  . The soft X-ray luminosity expected from steady cooling flows is missing. Here we outline and test the energetics of a cold mixing model in which gas below  1–2 keV  falls from the flow and is rapidly cooled by mixing with cold gas. The missing X-ray luminosity can emerge in the ultraviolet, optical and infrared bands, where strong emission nebulosities are commonly seen. We explore further the requirements for any heat sources that balance the radiative cooling in cluster cores.  相似文献   

11.
We present a quantitative estimate of the relative active galactic nucleus (AGN)/starburst content in a sample of 59 nearby  ( z < 0.15)  infrared bright ultraluminous infrared galaxies (ULIRGs) taken from the 1-Jy sample, based on infrared L -band (3–4 μm) spectra. By using diagnostic diagrams and a simple deconvolution model, we show that at least 60 per cent of local ULIRGs contain an active nucleus, but the AGN contribution to the bolometric luminosity is relevant only in  ∼15–20  per cent of the sources. Overall, ULIRGs appear to be powered by the starburst process, responsible for >85 per cent of the observed infrared luminosity. The subsample of sources optically classified as low-ionization nuclear emission-line regions (LINERs; 31 objects) shows a similar AGN/starburst distribution as the whole sample, indicating a composite nature for this class of objects. We also show that a few ULIRGs, optically classified as starbursts, have L -band spectral features suggesting the presence of a buried AGN.  相似文献   

12.
We present an X-ray spectroscopic study of the prototype far-infrared galaxy NGC 6240 from ASCA . The soft X-ray spectrum (below 2 keV) shows clear signatures of thermal emission well described by a multitemperature optically thin plasma, which probably originates in a powerful starburst. Strong hard X-ray emission is also detected with ASCA and its spectrum above 3 keV is extremely flat with a prominent iron K line complex, very similar to that seen in the Seyfert 2 galaxy NGC 1068 but about an order of magnitude more luminous ( L 3−10keV ≈ 1.4 × 1042 erg s−1). The hard X-ray spectrum indicates that only reflected X-rays of an active galactic nucleus (AGN) buried in a heavy obscuration ( N H > 2 × 1024 cm−2) are visible. This is evidence for an AGN in NGC 6240, emitting possibly at a quasar luminosity (∼ 1045 erg s−1), and suggests its significant contribution to the far-infrared luminosity.  相似文献   

13.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

14.
We present quantitative morphology measurements of a sample of optically selected group galaxies at  0.3 < z < 0.55  using the Hubble Space Telescope ( HST ) Advanced Camera for Surveys (ACS) and the gim2d surface brightness fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at  0.05 < z < 0.12  . We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disc-dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity,   z = 0.4  groups have  ∼5.5 ± 2  per cent fewer disc-dominated galaxies than the field, while by   z = 0.1  this difference has increased to  ∼19 ± 6  per cent. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disc population. At both redshifts, the discs of group galaxies have similar scaling relations and show similar median asymmetries as the discs of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge-dominated galaxies is  6 ± 3  per cent higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at   z = 0.4  and 0 using the semi-analytic galaxy catalogues of Bower et al. This model accurately reproduces the B/T distributions of the group and field at   z = 0.1  . However, the model does not reproduce our finding that the deficit of discs in groups has increased significantly since   z = 0.4  .  相似文献   

15.
We combine Lyman-break colour selection with ultradeep (≳200 ks) Chandra X-ray imaging over a survey area of ∼0.35 deg2 to select high-redshift active galactic nuclei (AGN). Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at   z ∼ 3  . Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at   z = 1  , we find no evidence that the faint slope of the XLF flattens at high z , but we do find significant (factor ∼3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity   L *  . Our data therefore support models of luminosity-dependent density evolution between   z = 1  and   z = 3  . A sharp upturn in the the XLF is seen at the very lowest luminosities  ( L X≲ 1042.5 erg s−1)  , most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.  相似文献   

16.
We study the 37 brightest radio sources in the Subaru/ XMM–Newton Deep Field. We have spectroscopic redshifts for 24 of 37 objects and photometric redshifts for the remainder, yielding a median redshift z med for the whole sample of   z med≃ 1.1  and a median radio luminosity close to the 'Fanaroff–Riley type I/type II (FR I/FR II)' luminosity divide. Using mid-infrared (mid-IR) ( Spitzer MIPS 24 μm) data we expect to trace nuclear accretion activity, even if it is obscured at optical wavelengths, unless the obscuring column is extreme. Our results suggest that above the FR I/FR II radio luminosity break most of the radio sources are associated with objects that have excess mid-IR emission, only some of which are broad-line objects, although there is one clear low-accretion-rate object with an FR I radio structure. For extended steep-spectrum radio sources, the fraction of objects with mid-IR excess drops dramatically below the FR I/FR II luminosity break, although there exists at least one high-accretion-rate 'radio-quiet' QSO. We have therefore shown that the strong link between radio luminosity (or radio structure) and accretion properties, well known at z ∼ 0.1, persists to z ∼ 1. Investigation of mid-IR and blue excesses shows that they are correlated as predicted by a model in which, when significant accretion exists, a torus of dust absorbs ∼30 per cent of the light, and the dust above and below the torus scatters ≳1 per cent of the light.  相似文献   

17.
We present the rest-frame optical and infrared colours of a complete sample of  1114 z < 0.3  galaxies from the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Legacy Survey and the Sloan Digital Sky Survey (SDSS). We discuss the optical and infrared colours of our sample and analyse in detail the contribution of dusty star-forming galaxies and active galactic nuclei (AGN) to optically selected red sequence galaxies.
We propose that the optical  ( g − r )  colour and infrared  log( L 24/ L 3.6)  colour of galaxies in our sample are determined primarily by a bulge-to-disc ratio. The  ( g − r )  colour is found to be sensitive to the bulge-to-disc ratio for disc-dominated galaxies, whereas the  log( L 24/ L 3.6)  colour is more sensitive for bulge-dominated systems.
We identify ∼18 per cent (195 sources) of our sample as having red optical colours and infrared excess. Typically, the infrared luminosities of these galaxies are found to be at the high end of star-forming galaxies with blue optical colours. Using emission-line diagnostic diagrams, 78 are found to have an AGN contribution and 117 are identified as star-forming systems. The red  ( g − r )  colour of the star-forming galaxies could be explained by extinction. However, their high optical luminosities cannot. We conclude that they have a significant bulge component.
The number densities of optically red star-forming galaxies are found to correspond to ∼13 per cent of the total number density of our sample. In addition, these systems contribute ∼13 per cent of the total optical luminosity density, and 28 per cent of the total infrared luminosity density of our SWIRE/SDSS sample. These objects may reduce the need for 'dry mergers'.  相似文献   

18.
ROSAT /HRI observations of the powerful radio-loud galaxy 3C 382 reveal extended X-ray emission associated with the source. On the basis of this new spatial component, a previous ROSAT /PSPC spectral analysis of the source is revised. Allowing for the presence of an additional thermal component in the PSPC spectrum, the non-thermal component is found to be compatible with the extrapolation of the well-defined 3C 382, 2–10 keV, power-law spectrum into the soft X-ray region. The thermal – extended – component would then account for the soft excess emission previously reported for this source. The origin of this thermal component is not clear. Its luminosity compares with that of rich Abell clusters; yet, the galaxy environment in 3C 382 appears of moderate optical richness. An alternative is that it is the result of a massive extended gaseous atmosphere sustained by the deep gravitational potential well of 3C 382.  相似文献   

19.
We present the luminosity function of 90-μm-selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z =0.3. Their luminosities are in the range 10965−2 L /L<1012, i.e. non-ultraluminous. From our sample of 37 reliably detected galaxies in the ELAIS S1 region from the Efstathiou et al. S 90100 mJy data base, we have found optical, 15-μm or 1.4-GHz identifications for 24 (65 per cent). We have obtained 2dF and UK Schmidt FLAIR spectroscopy of 89 per cent of identifications to rigid multivariate flux limits. We construct a luminosity function assuming that (i) our spectroscopic subset is an unbiased sparse sample, and (ii) there are no galaxies that would not be represented in our spectroscopic sample at any redshift. We argue that we can be confident of both assumptions. We find that the luminosity function is well described by the local 100-μm luminosity function of Rowan-Robinson, Helou & Walker. Assuming this local normalization, we derive luminosity evolution of (1+ z )2.45±0.85 (95 per cent confidence). We argue that star formation dominates the bolometric luminosities of these galaxies, and we derive comoving star formation rates in broad agreement with the Flores et al. and Rowan-Robinson et al. mid-infrared-based estimates.  相似文献   

20.
We present a detailed analysis of high-resolution Chandra observations of the merger system NGC 3256, the most infrared-luminous galaxy in the nearby universe. The X-ray data show that several discrete sources embedded in complex diffuse emission contribute ≳20 per cent of the total emission     in the  0.5–10 keV  energy range). The compact sources are hard and extremely bright and their emission is probably dominated by accretion-driven processes. Both galaxy nuclei are detected with  LX∼3–10×1040 erg s−1  . No evidence is found for the presence of an active nucleus in the southern nucleus, contrary to previous speculation. Once the discrete sources are removed, the diffuse component has a soft spectrum that can be modelled by the superposition of three thermal plasma components with temperatures   kT =0.6  , 0.9 and 3.9 keV. Alternatively, the latter component can be described as a power law with index  Γ∼3  . Some evidence is found for a radial gradient of the amount of absorption and temperature of the diffuse component. We compare the X-ray emission with optical, H α and NICMOS images of NGC 3256 and find a good correlation between the inferred optical/near-infrared and X-ray extinctions. Although inverse Compton scattering could be important in explaining the hard X-rays seen in the compact sources associated with the nuclei, the observed diffuse emission is probably of thermal origin. The observed X-ray characteristics support a scenario in which the powerful X-ray emission is driven solely by the current episode of star formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号