首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ozone observations made during 1964 and 1965 at nine Mediterranean, central and southeast European stations (latitudes 38–52°N, longitudes 9–23°E) reveal patterns of seasonal and shorter time-variations in total ozone as well as in vertical ozone distribution. During the winter-spring season, a significant increase (20%) of ozone occurs essentially simultaneously with the spring stratospheric warming, and is noticed at all stations.—Autocorrelation coefficients show that the total ozone on any day is strongly related to the total ozone of the preceding four days in summer or one or two days in winter-spring or autumn. Changes of total ozone in southeast Europe correlate closely with those in Mediterranean Europe, and less closely with those from north central Europe.—Power spectrum analysis detects the dependence of ozone changes on processes with periods longer than 6–8 days, and indicates a significant oscillation with a period of 14–15 days, perhaps a result of the direct influence of lower stratospheric circumhemispheric circulation. — Reliable vertical ozone soundings were not available from all stations. The mean vertical profiles at Arosa, Switzerland (47°N) and Belsk, Poland (51°) are very similar. More than 60% of the variability of the total ozone is contributed by changes in ozone concentration between 10 and 24 km; less than 10% is due to variations above 33 km. Changes in ozone partial pressure at different altitudes, and relationships of those changes to total ozone, indicates that a mean vertical ozone distribution may be described adequately by considering the ozone changes in four layers: a) the troposphere, b) the lower stratosphere up to 24 km, c) a transition layer from 24 km to a variable upper border at 33–37 km, and d) the layer above 33–37 km.Part of this paper was presented at the Ozone Seminar in Potsdam, Germany, 27 September 1966.  相似文献   

2.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

3.
Regular measurements of the atmospheric ozone in the Brazilian sector were started at Cachoeira Paulista (22.7°S, 45.0°W), and Natal (5.8°S, 35.2°W) in May 1974 and November 1978, respectively. The results of the total ozone measurements carried out at these two stations up to 1981 are presented in this communication and compared with other low-and mid-latitude stations. Although Natal is an equatorial station, it presents a prominent annual variation, and the average total ozone content is high compared to satellite measurements. During 1977–78, abnormally low values of total ozone were observed at Cachoeira Paulista. Some preliminary results about the QBO 9quasi-biennial oscillation) during 1974–81 are also presented.  相似文献   

4.
Evaluations of radiosonde soundings over North America and Europe, measurements aboard commercial airlines, and permanent ozone registrations at nineteen ground-based stations between Tromsö, Norway, and Hermanus, South Africa, yield three belts of higher ozone intrusion from the stratosphera and maximum values of the annual means at about 30°N, at between 40°–45°N and at about 60°N. A marked decrease of the annual mean values of the tropospheric ozone is detected towards the equator and the pole, respectively.In the northen hemisphere the maximum of the annual cycle of the tropospheric ozone concentration occurs in spring at high latitudes and in summer at mid-latitudes.For the tropical region from 30°S to 30°N a strong asymmetry of the northern and southern hemisphere occurs. This fact is discussed in detail. The higher troposphere of the tropics seems to be a wellmixed reservoir and mainly supplied with ozone from the tropopause gap region in the northern hemisphere. The ozone distribution in the lower troposphere of the whole tropics seems to be controlled by the up and down movements of the Hadley cell. The features of large-scale and seasonal variation of tropospheric ozone are discussed in connection with the ozone circulation in the stratosphere, the dynamic processes near the tropopause and the destruction rate at the earth's surface.  相似文献   

5.
Sreedharan  C. R.  Mani  A. 《Pure and Applied Geophysics》1973,106(1):1576-1580
The vertical profiles of ozone and temperature from a series of balloon soundings at Delhi (28°N), Poona (18°N) and Trivandrum (8°N) were studied with synoptic meteorological data. While both ozone and temperature profiles show similar variations over all three stations, ozone maxima being always associated with thermally stable layers, the variations are most pronounced over Delhi, particularly in winter and in early spring when a series of western disturbances pass over north India. Both ozone and temperature profiles over Delhi show a layer structure characterized by a series of maxima and minima in both the vertical distribution of ozone and temperature and these are most pronounced in the lower stratosphere. These variations are associated with the influx of ozone-rich middle latitude stratospheric air over Delhi replacing subtropical air.  相似文献   

6.
Examined are temperature and ozone variations in the Northern Hemisphere stratosphere during the period 1958–77, as estimated from radiosondes rocketsondes, ozonesondes, and Umkehr measurements. The temperature variation in the low tropical stratosphere is a combination of the variation associated with the quasi-biennial oscillation, and a variation nearly out of phase with the pronounced 3-yearly temperature oscillation (Southern Oscillation) present in the tropical troposphere since 1963. Based on radiosonde and rocketsonde data, the quasibiennial temperature oscillation can be traced as high as the stratopause, the phase varying with both height and latitude. However, the rocketsonde-derived temperature decrease of several degrees Celsius in the 25–55 km layer of the Western Hemisphere between 1969 (sunspot maximum) and 1976 (sunspot minimum) is not apparent in high-level radiosonde data, so that caution is advised with respect to a possible solar-terrestrial relation.There has been a strong quasi-biennial oscillation in ozone in the 8–16 km layer of the north polar region, with ozone minimum near the time of quasi-biennial west wind maximum at a height of 20 km in the tropics. A quasi-biennial oscillation in ozone (of similar phase) is also apparent from both ozonesonde data and Umkehr measurements in 8–16 and 16–24 km layers of north temperate latitudes, but not higher up. Both measurement techniques also suggest a slight overall ozone decrease in the same layers between 1969 and 1976, but no overall ozone change in the 24–32 km layer. Umkehr measurements indicate a significant 6–8% increase in ozone amount in all stratospheric layers between 1964 and 1970, and in 1977 the ozone amount in the 32–46 km layer was still 4% above average despite the predicted depletion due to fluorocarbon emissions. The decrease in ozone in the 32–46 km, layer of mid latitudes following the volcanic eruptions of Agung and Fuego is believed to be mostly fictitious and due to the bias introduced into the Umkehr technique by stratospheric aerosols of volcanic origin. Above-average water vapor amounts in the low stratosphere at Washington, DC, appear closely related to warm tropospheric temperatures in the tropics, presumably reflecting variations in strength of the Hadley circulation.  相似文献   

7.
The variations of total ozone at Alma-Ata (43°N, 76 °E) and ozone profiles obtained by balloon sounding at Tateno (36°N, 140°E), Wallops Island (38°N, 75°W) and Cagliari (39°N, 9°E) in the periods of Forbush decreases (FD) in galactic cosmic rays have been analysed. A decrease of total ozone was observed in the initial stage of the FD and an increase 10–11 days later. The average total deviations calculated using the superposed epoch method for 9 FD events are equal to 30 D. U. in the positive and to –18 D. U. in the negative phase. The changes of average ozone profiles, associated with 26 FD events, are more significant in the lower stratosphere and upper troposphere. The decrease of the partial ozone pressure at a height of 12–15 km is about 30 mb. These vertical variations of ozone coincide with the average changes of the respective temperature profiles. A cooling, on the average, of 3°C was observed at 12–15 km, and a heating of 4°C below this level.  相似文献   

8.
Using a modified Brewer bubbler ozone sensor, continuous measurements of the ozone concentration near the ground were made at Poona (18°N, 73°E) for one year 1969–1970. The surface ozone concentration shows a pronounced seasonal variation, with a minimum during the monsoon months and a maximum during the pre-monsoon summer months. There is also a marked diurnal variation in surface ozone concentration which clearly follows the diurnal variation of temperature and is again a maximum during the summer months and a minimum during the monsoon. A secondary maximum in ozone concentration occurs in the forenoon during the winter months, associated with the temperature inversions that occur near the ground in this season.Both ozone and radioactive tracers, such as Cs-137 both in air and in precipitation show variations indicating that they have identical source regions and sinks. The latitudinal anomaly of surface ozone and Cs-137 observed in the low latitudes over India is explained as arising from the reduction in the rate of transfer of these tracers from the stratosphere to the troposphere, as a result of the reversed circulation at the upper levels in this season.From continuous measurements of surface ozone made with three electrochemical sensors exposed at three levels, 0, 15 and 35 m above the ground, the ozone flux has been directly calculated for the first time in the tropics. The ozone flux was calculated using both the rate of decay method used by Kroening and Ney and Regener's profile method. The profile method gives values of the order of 1.71 to 7.04×1011 mol/cm2/sec and that obtained by the rate of decay method is found to be 4.2 to 5.6×1011 mol/cm2/sec and are in good agreement with the flux values reported by other investigators.  相似文献   

9.
The information content of the 7-year BUV data set has been reexamined by a comparison with a fairly large set of ground Dobson and M-83 instruments. The satellite-ground intercomparison of total ozone was done under different types of ground observation techniques (observation code) and different instrument exposure (exposure code) and for various distances of the subsatellite point from the station. Because of the existing latitudinal gradient in total ozone, at a given station the bias ground-BUV tends to be smaller when the subsatellite point is at a latitude higher than the station's latitude. Knowing the total ozone gradient at a given station, the BUV total ozone has been corrected to account for the ozone gradient and the correlation was calculated with the corresponding ground observations. These correlations seem to offer no improvement when compared with the correlations between the ground ozone and the actual BUV ozone at distances of the subsatellite point from the station within 200 km from the station used in previous studies. The seasonal variation of the BUV-ground correlation reveals information on the noise level of the measurements and the geographical distribution of the percentage mean bias: (Ground-BUV)×100/(Ground) is discussed. Both on short and on longer time scales it appears that the BUV derived recommended total ozone data set is reasonably good and possible instrumental drifts are not large. The analysis includes an extension through April 1977 of the BUV and contour-derived total ozone trends byLondon andLing (1980). Over the northern hemisphere both data sets (contour and BUV) show comparable trends over middle and high latitudes which range from –3 D.U./year to –5 D.U./year during the 7-year period April 1970–April 1977. In the southern hemisphere, however, long-term variation in total ozone cannot be determined from ground observations alone. It is concluded that for unknown reasons during the 7-year period of study, total ozone has been decreasing over most of the globe. The negative growth rates at high latitudes of the northern hemisphere are highly significant.  相似文献   

10.
Summary Winter and summer Mid-Latitude (45oN) atmospheres to 90 km, two of a family of nine atmospheres supplemental to the U.S. Standard Atmosphere (1962), provide information on atmospheric structure by seasons rather than the mean annual data shown in the Standard, which is described for reference. Principal data sources for constructing these atmospheres consisted of summaries of Northern Hemisphere radiosonde observations at stations near, 45oN, and observations made from rockets and instruments released by rockets, from nearly a dozen Northern Hemisphere launching sites.Winter and summer temperature-height profiles begin with surface temperatures of –1° and +21 °C, respectively, and contain three isothermal layers: –58°C at 19 to 27 km in winter and –57.5°C at 13 to 17 km in summer; –7.5° and +2.5°C at 47 to 52 km; and –79.5 and –99°C at 80 to 90 km, respectively. The temperature-height curve for the U.S. Standard has a surface temperature of +15°C with isothermal regions at 11 to 20 km (–56.5°C), 47 to 52 km (–2.5°C), and 80 to 90 km (–92.5°C). In all three atmospheres, temperature gradients for various segments are linear with geopotential, height. Humidity is incorporated into the lowest 10 km of the Supplemental Atmospheres, whereas the Standard is dry. Figures and tables depict temperature, relative humidity, pressure, and density for winter and summer, and temperature, pressure, density, speed of sound, and dynamic viscosity for the U.S. Standard Atmosphere.The Supplemental Atmospheres are mutually consistent; zonal wind profiles, computed from the geostrophic wind equation and selected pressure heights, compare favorably with existing radiosonde and rocket wind observations.  相似文献   

11.
During solar cycle 21 (1976–86), the primary solar irradiance at 300 nm was steady during 1980–82 and thereafter decreased until 1986 by only 2–3%. The stratospheric ozone in middle latitudes had a QBO of 3–4% in this interval but the long-term ozone trend was less than 3% per decade, which could result in a UVB increase of only 5–6% per decade. Thus, the combined effect of changes in primary solar irradiance and ozone changes could be an increase of 5–6% in UVB, observed at ground during 1977–81 and a steady level during 1981–86. During 1976–86, the average cloudiness changed by less than 5% indicating UVB changes of 5% or less on this count. The aerosol level was almost constant during 1976–82 and increased abruptly in 1982 due to the E1 Chichon eruption and decayed slowly unitl 1986. Thus, due to aerosols only, the UVB was expected to be constant during 1976–82, to decrease sharply in 1982 and to recoup slowly thereafter.Measurements of clear-sky solar UVB at ground made at Jungfraujoch (Swiss Alps, 47°N, 8°E) during 1981–89 and at Rockville, USA (39°N, 77°W) were not comparable between themselves and did not follow the above expected patterns. Neither did the all-day R-B meter UVB measurements at Philadelphia, USA (40°N, 75°W) and Minneapolis, USA (45°N, 93°W). We suspect that some of these measurements are erroneous. This needs further detailed scrutiny.  相似文献   

12.
A study of the formation and movement of sequential Sporadic-E layers observed during the night-time hours at two Indian low-latitude stations, SHAR(dip 10°N) and Waltair (dip 20°N) shows that the layer are formed around 19:00 h. IST at altitudes of ≈180 km. They descend to the normal E-region altitude of about 100 km in three to four hours and becomes blanketing type of Es before they disappear. However, the absence of these descending layers at an equatorial station, Trivandrum (dip 2°N) gives the experimental evidence for wind shear theory. The meridional neutral wind derived from the height variation of the F-layer showed significant poleward wind during the descent of these layers. Hence it is inferred that these layers are formed as a consequence of the convergence of plasma by the poleward wind and the equatorward propagating gravity waves (inferred from the height fluctuations of F-layer).  相似文献   

13.
The rocketsonde data obtained from the launchings made at Thumba (8°3215N, 76°5148E) during the winter period 1970–71, as already reported, have indicated that warmings of noticeable magnitude occurred at high levels (upper stratosphere and mesosphere) over this tropical station during the period mentioned. The mean monthly radiosonde temperatures of 50, 100 and 300 mb levels at Thumba (Trivandrum) and Delhi (28°35N, 77°12E) during the same period have also pointed out certain anomalies consistent with the warmings referred to above at Thumba. The radiosonde temperatures of the two stations, Thumba (Trivandrum) and Delhi, have now been examined, along with the values of total ozone, for the ten winter periods commencing from 1961–1962. The analysis has pointed out the possibility of high-level warmings also having occurred in the past over the Indian region during the winters of 1963–1964 and 1967–1968, which are also the periods when prominent warmings are definitely known to have occurred at higher latitudes. The behaviour of total ozone has been found to be different in the different years of the warmings. The features noticed have been presented and discussed.  相似文献   

14.
Ozonesonde data are matched with concomitant rawinsonde data to provide a direct determination of horizontal, meridional, flux of ozone by the transient eddies. Data are from 27 stations in 4 regions: Eastern and western North America, western Europe, and Japan. Results confirm the existence of significant northward flux near 40°N, 10–18 km, in winter and spring, as shown by previous investigators. However, areas of significant equatorward flux are found at high mid-latitudes, 10–16 km, over North America in winter and spring, and at all 3 Japanese stations, 10–18 km, in spring. Transient eddy fluxes are typically small in summer, and are also small throughout the troposphere and most of the middle stratosphere.  相似文献   

15.
The relative contributions of quasi-periodic oscillations from 2 to 35 days to the variability of foF2 at middle northern latitudes between 42°N and 60°N are investigated. The foF2 hourly data for the whole solar cycle 21 (1976–1986) for four European ionospheric stations Rome (41.9°N, 12.5°E), Poitiers (46.5°N, 0.3°E), Kaliningrad (54.7°N, 20.6°E) and Uppsala (59.8°N, 17.6°E) are used for analysis. The relative contributions of different periodic bands due to planetary wave activity and solar flux variations are evaluated by integrated percent contributions of spectral energy for these bands. The observations suggest that a clearly expressed seasonal variation of percent contributions exists with maximum at summer solstice and minimum at winter solstice for all periodic bands. The contributions for summer increase when the latitude increases. The contributions are modulated by the solar cycle and simultaneously influenced by the long-term geomagnetic activity variations. The greater percentage of spectral energy between 2 to 35 days is contributed by the periodic bands related to the middle atmosphere planetary wave activity.  相似文献   

16.
The results of 21 rocket flights of Arcas optical ozonesondes have been combined to produce estimates of the mean ozone distribution and its variability which apply to a broad range of latitudes. The flights were launched at sites from near the equator to 58°S and to 64°N in the years from 1965 to 1971. The local-noon mean ozone densities in molecules/cubic centimeter are 7.0×1010 at 50 kw, 6.7×1011 at 40 km, 3.1×1012 at 30 km, and 3.1×1012 at 20 km. The maximum density is 4.5×1012 at 24 km. The range of observed densities is about ±30% of the mean value at 50 km, ±40% at 40 km, ±40% at 30 km and +200%, –66% at 20 km. The variabilities at the higher altitudes in this set of observations are much less than that indicated from previous measurements.  相似文献   

17.
One of the longest temperature records available for the equatorial region is provided by Rocketsonde from Thumba (8°N, 77°E), India during the period 1971–1993. In recent times, these data sets are reanalyzed using the up-to-date regression models, which take care of several corrections and parameters, not accounted for in earlier analyses and hence affecting the conclusions. In this paper, annual mean solar response in this data set along with the seasonal solar coefficient is quantitatively estimated now with improved confidence. A negative solar response in the stratosphere (1–2 K/100 solar flux unit, sfu) and a positive response for the mesosphere (0.5–3 K/100 sfu) are found. The negative stratospheric solar response is in contrast to the solar coefficient reported for low latitudes by earlier workers for other stations.  相似文献   

18.
Coherency spectra derived from time series of stratospheric quantities indicate oscillations in the frequency range below 0.5 d–1 which are correlated on a global scale. Satellite observations of total ozone and stratospheric radiance (BUV and SIRS, Nimbus4, April–November 1970) have been used to derive phase relationships of such oscillations. As an example, an oscillation of total ozone with a period of 7.5 d and zonal wave number zero is analyzed in detail. The basic assumption is made and tested, that the oscillation reflects stratospheric planetary waves as obtained from Laplace's tidal equations. The observed latitudinal phase shifts for the total ozone oscillation are in good agreement with theoretical predictions. It is concluded from the observations of ozone and radiance that mainly divergence effects related to global-scale waves are responsible for the 7.5 d oscillations of total ozone at high and middle latitudes and at the equator whereas in the latitude range 10°S–20°S predominantly temperature effects are important. Meridional wind amplitudes of some 10 cm/s are sufficient to explain the high and mid-latitude ozone oscillations. At low latitudes vertical wind amplitudes of about 0.2 mm/s corresponding to height changes of the ozone layer of roughly ±20 m are obtained.  相似文献   

19.
An RH-560 rocket flight was conducted from Sriharikota rocket range (SHAR) (14°N, 80°E, dip latitude 5.5°N) to study electron density and electric field irregularities during spread F. The rocket was launched at 2130 local time (LT) and it attained an apogee of 348 km. Results of electron density fluctuations are presented here. Two extremely sharp layers of very high electron density were observed at 105 and 130 km. The electron density increase in these layers was by a factor of 50 in a vertical extent of 10 km. Large depletions in electron density were observed around 175 and 238 km. Both sharp layers as well as depletions were observed also during the descent. The presence of sharp layers and depletions during the ascent and the descent of the rocket as well as an order of magnitude less electron density, in 150/300 km region during the descent, indicate the presence of strong large-scale horizontal gradients in the electron density. Some of the valley region irregularities (165/178 km), in the intermediate scale size range, observed during this flight, show spectral peaks at 2 km and can be interpreted in terms of the image striation theory suggested by Vickrey et al. The irregularities at 176 km do not exhibit any peak at kilometer scales and appear to be of new type. The growth rate of intermediate scale size irregularities, produced through generalized Rayleigh Taylor instability, was calculated for the 200/330 km altitude, using observed values of electron density gradients and an assumed vertically downward wind of 20 ms–1. These growth rate calculations suggest that the observed irregularities could be produced by the gradient drift instability.  相似文献   

20.
A study is presented of a possible correlation between ozone and Aitken nuclei concentration measured between 6 km and 19 km by the instruments installed on the WB-57F aircraft. Samples were taken between 48°N and 9°S latitudes over the U.S., the Gulf of Mexico, and Central and South America between March 1974 and February 1975.A weak negative correlation between AN and ozone concentrations was found at altitudes higher than the tropical tropopause. Scattering of the signs and magnitudes of correlation coefficients was found below the tropopause. Largest variations of the coefficient values were related to the stratospheric pollution following the eruption of the Guatemalan volcano Fuego.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号