首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
泛滥平原沉积物标准物质研制   总被引:6,自引:6,他引:0  
泛滥平原沉积物能代表流域内元素的平均分布规律并具有普遍的适用性,是地球化学填图工作的重要介质。目前国际上尚无泛滥平原沉积物标准物质,国外相似标准物质的研制注重于环境方面,定值成分较少;我国同类的土壤和水系沉积物标准物质受限于不同工作需要,研制目的各不相同,且多数标准物质不足。为满足需求,本文研制了长江流域、赣江流域、汉水流域、淮河流域、黄河流域、海河流域、黑龙江流域共7个泛滥平原沉积物国家一级标准物质(编号为GBW07385~GBW07391)。此系列标准物质采用X射线荧光光谱压片法测试了26种成分,主量成分的RSD小于1%,微量元素的RSD约为2%,所有成分的RSD均小于7%,方差检验的F值均小于临界值F0. 05(24,25)=1. 96,表明样品的均匀性良好。在23个月的考察期内,检验的24种成分未发现统计学意义的明显变化,证明样品的稳定性良好。由全国13家实验室采用不同原理的、可靠的多种分析方法共同完成了73种元素和化合物共511个特性成分的定值测试,除GBW07386和GBW07388的CO2未能赋值外,其余494个特性成分给出了认定值与不确定度,15个特性成分给出了参考值,是我国同类标准物质定值最为齐全的一个系列。该系列标准物质代表了各自流域元素的背景含量,适用于多目标地球化学调查、土地质量地球化学调查等样品的分析质量监控,亦可用作环境、农业等领域相关样品测试的量值和质量监控标准。  相似文献   

2.
Dongping Lake area, located in the lower reaches of Yellow River, is an ideal place to study the changes of modern river and lake sedimentary environment. The sediment samples of Dawen River, Yellow River, and Dongping Lake were collected, and the major elements, trace elements and organic matter geochemical composition of the samples were analyzed. Cluster analysis, characteristic element ratio method and graphic method were used to explore the geochemical characteristics of sediments and their environmental implication. The results show that the contents of SiO_2, Na_2O, TiO_2 and Zr in sediments of Dawen River and Yellow River are relatively high, and the contents of iron and manganese oxides, organic matter, CaO, P_2O_5 and Sr in lake sediments are relatively high. That reveals the differences of sedimentary environments between the rivers and the lake. The contents of Sr and Zr in Dawen River are affected by the rapid migration of clastic materials in the upstream carbonate source area during the flood season; the δCe,ΣREE and REE's ratios in the sediments of the Yellow River reflect the influence of the Loess source; and the distribution of elements changes along the flow direction during the flood season. The characteristics of p H, element composition and LREE HREE fractionation of the lake sediments indicate that the sediment source is complex, and the lake environment is affected by the flood season. The study shows that the geochemical content and its variation characteristics of sediments effectively reveal the sedimentary environment, material composition and characteristics of flood season of rivers and the lake in the study area.  相似文献   

3.
The composition of river water, sediments, and pore waters (down to 30 cm below the bed) of Las Catonas Stream was studied to analyze the distribution of trace elements in a peri-urban site. The Las Catonas Stream is one of the main tributaries of Reconquista River, a highly polluted water course in the Buenos Aires Province, Argentina. The semi-consolidated Quaternary sediments of the Luján Formation are the main source of sediments for Las Catonas Stream. The coarse-grained fraction in the sediments is mainly composed of tosca (calcretes), intraclasts, bone fragments, glass shards, quartz, and aggregates of fine-grained sediments together with considerably amounts of vegetal remains. The clay minerals are illite, illite–smectite, smectite, and kaolinite. For the clay-sized fraction, the external surface area values are mostly between 70 and 110 m2g?1, although the fraction at 15 cm below the bottom of the river shows a lower surface area of 12 m2g?1. The N2 adsorption–desorption isotherms at 77 K for this sample display a behavior indicative of non-porous or macroporous material, whereas the samples above and below present a typical behavior of mesoporous materials with pores between parallel plates (slit-shaped). As, Cr, Cu, and Cd concentrations increase down to 15 cm depth in the sediments, where the highest trace element and total organic carbon (TOC) concentrations were found, and then decrease toward the bottom of the core. Except for As, the levels of the other heavy metals show higher concentration in surficial waters than in pore waters. Distribution coefficients between the sediments, pore water, and surficial water phases indicate that As is released from the sediments to the pore and surficial waters. Cu content strongly correlates with TOC (mainly from vegetal remains), suggesting that this element is mainly bound to the organic phase.  相似文献   

4.
We analyzed 77 surface sediment samples collected in the southwestern East/Japan Sea from the Korea Strait through the Ulleung Basin and the Korea Plateau for grain size, calcium carbonate, organic carbon, and major (Na, Mg, Al, Fe, K, Ca, and Ti) and trace elements (P, Mn, Sr, Li, Sc, V, Cr, Co, Ni, Zn, Cu, and Pb).The chemical composition of the surface sediments was found to be highly variable spatially. Cluster analysis of surface sediment chemical compositions indicated five major geochemical sedimentary environments: basin, lower slope, coast and upper slope, inner shelf, and outer shelf. Continental-shelf sediments were rich in shell fragments and had relict and coarse-grained characteristics. Recent fine-grained sediments were only distributed in coastal, slope, and basin areas. Concentrations of Al, K, Ca, Ti, Cr, and Sc were highest in the coastal and upper slope areas and decreased with water depth. Elemental ratios using major and trace elements indicated that coastal and upper slope detrital sediments were mixtures of sediments derived from the Changjiang (Yangtze) and Nakdong Rivers. Although the concentrations of organic carbon, P, Mn, V, Co, Ni, Cu, and Pb increased with water depth, their distribution patterns indicated authigenic (V, Cu, and Pb) and diagenetic (Fe, P, Mn, Co, and Ni) origins. The distribution pattern with water depth suggested that the chemical composition of surface sediment was determined by sedimentologic and geochemical processes, such as the supply of detrital and biogenic materials, and authigenic and post-depositional diagenetic processes in sediments.  相似文献   

5.
Geological and geochemical study has been carried out to investigate arsenic contamination in groundwater in Nawalparasi, the western Terai district of Nepal. The work carried out includes analyses of core sediments, provenance study by rare earth elements analyses, 14C dating, and water analyses. Results showed that distribution of the major and trace elements are not homogeneous in different grain size sediments. Geochemical characteristics and sediment assemblages of the arsenic contaminated (Nawalparasi) and uncontaminated (Bhairahawa) area have been compared. Geochemical compositions of sediments from both the areas are similar; however, water chemistry and sedimentary facies vary significantly. Extraction test of sediment samples showed significant leaching of arsenic and iron. Chemical reduction and contribution from organic matter could be a plausible explanation for the arsenic release in groundwater from the Terai sediments.  相似文献   

6.
The textural and geochemical aspects of the sediments of a tropical mangrove ecosystem have been studied and discussed. The sediments are characterized by the abundance of silt and sand with minor amounts of clay. The mean size of the sediment ranges from 0.205 mm to 0.098 mm (fine to very fine grained sand). The sediments are very poorly sorted, negatively to very negatively skewed, and platy to extremely leptokurtic in nature. The organic carbon content of the sediments ranges from 0,33% to 4.93%, which is controlled by the particle size of the sediments. The CaCO3 content is five times the enrichment of organic carbon. This enhanced CaCO3 content of the mangrove sediments might be a result of the abundance of shell fragments in the sediments. The shell mining activities in the estuarine bed adjoining the Kumarakam mangroves also contribute a substantial amount of lime muds to the mangrove area, which in turn add CaCO3 to the sediments. The relative concentrations of heavy metals are Fe > Mn > Cr > Zn > Ni > Cu. All heavy metals other than Fe show an increase in concentration compared to the other parts of the estuarine bed. Cluster analysis indicates that the contents of organic C, Fe and Mn have a marked bearing on the Cr, Zn, Ni, and Cu levels of the mangrove sediments.  相似文献   

7.
Samples of authigenic material, sediment overlying water and oxic surface sediment (0–0.5-cm depth) from a perennially oxygenated lacustrine basin were analysed to investigate which solid phases are important for binding a suite of trace elements (Ag, As, Ca, Cd, Cu, Hg, In, methylmercury (MeHg), Mg, Mo, Pb, Sb and Zn). The authigenic material, which was collected with inert Teflon sheets deployed for several years across the sediment–water interface, contained mainly poorly crystallized Fe oxyhydroxides and natural organic matter, presumably humic substances derived from the watershed. Manganese oxyhydroxides were not present in the collected authigenic material due to the slightly acidic condition (pH = 5.6) of the lake that prevents the formation and recycling of these compounds. Conditional equilibrium constants for the adsorption of cationic (KFe–M) and anionic (KFe–A) trace elements onto the authigenic Fe oxyhydroxides were estimated from their concentrations in the authigenic material and in bottom water samples. These field-derived values of KFe–M and KFe–A were compared with those predicted by the surface complexation model, using laboratory-derived intrinsic adsorption constants and the water composition at the study site. Equilibrium constants (KPOM–M) were also calculated for the adsorption of the cationic trace elements onto the humic substances contained in the diagenetic material. The field-derived values of KPOM–M were compared to those predicted by the speciation code WHAM 6 for the complexation of the trace elements by dissolved humic substances in the lake. Combining the results of the present study with those on the distributions of trace elements in the porewater and solid-phase sediments reported in previous studies at the same site, it was determined whether the trace elements bind preferentially to Fe oxyhydroxides or natural organic matter in oxic sediments. The main inferences are that the anionic trace elements As, Mo and Sb, as well as the cationic metal Pb are preferentially bound to the authigenic Fe oxyhydroxides whereas the other trace elements, and especially Hg and MeHg, are preferentially bound to the humic substances.  相似文献   

8.
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O3T suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C–S–Fe relationship owing to authigenic precipitation of Fe–Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.  相似文献   

9.
Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM–EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water–sediment interface of (i) dissolved SO4 promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a major flood event, about 870 t of Zn, 18 t of Cd, 25 t of Pb and 17 t of Cu could be mobilized from the downstream reservoir sediments along the Lot River by resuspension-induced oxidation of sulfide phases. These amounts are equivalent to 13-fold (Cd), ∼6-fold (Zn), 4-fold (Pb) the mean annual inputs of the respective dissolved trace metals into the Gironde estuary.  相似文献   

10.
《Sedimentary Geology》2006,183(3-4):217-242
Geochemical and textural variations in frontal dune sediments along the western coast of Jutland, Denmark, have been investigated in order to identify possible sediment ‘provinces’ and transport pathways. An understanding of sediment sources and sinks is important for both for an understanding of the nature of sedimentary environments and for applied coastal engineering and management purposes. Four coastal sectors were identified on the basis of geochemical composition. One sector is compositionally different from the other three units, having higher concentrations of the trace elements Ni, Cr, V, Sc, Zn, Pb, Ba, Zr and many rare earth elements. Dune sediments on this section of coast also have higher Al2O3 to K2O ratios and lower Al2O3 to Fe2O3 ratios, reflecting a lower content of feldspar and higher content of heavy minerals. It is inferred that different, or additional, sediment source(s) have supplied sediment to this section of coast. Beach nourishment has contributed to the observed compositional differences, but previous data obtained from the Lodbjerg area indicate that aeolian sands on this section of coast naturally have a relatively high Si, Fe and Ti content, reflecting high quartz / feldspar ratio and relatively high content of heavy minerals, compared with those on other sections of the coast. Frontal dunes along the most northern section show high abundances of K2O, Rb and Ba, reflecting a relatively high K-feldspar content derived from local sources. Alongshore trends were also identified in the mean particle size and sorting of the frontal dunes, although there is no direct correspondence with the observed geochemical differences. Three coastal units can be identified on the basis of particle size. Frontal dune sediments in the middle section are relatively coarser and less well-sorted than those to the north and south, probably reflecting both the addition of beach nourishment material and greater exposure to strong westerly winds, which are a capable of transporting a wide range of particle sizes. The three units defined on this basis do not correlate directly with the units defined on the basis of geochemical composition.  相似文献   

11.
Coastal margins, especially the river-influenced coastal areas, are considered as active interfaces between the continental and oceanic environments, which have huge dispersal of detrital materials and heavy metal input. It is well determined that the fine-grained sediments are important reservoir for the accumulation of heavy metals. In this study, we analyzed the radiocarbon age, texture, organic matter, carbonate content, and geochemical compositions of two sediment cores (GM42 and GM44) retrieved in front of the Coatzacoalcos River mouth basin, southwestern Gulf of Mexico (~864 and 845 m water depth, respectively). Our objective was to infer the sedimentation rate, intensity of weathering, provenance, and influence of anthropogenic activities on heavy metal contamination in sediments. The radiocarbon-age measurements of mixed planktonic foraminifera for core GM44 reveals an age of 21,289 ± 136 cal. years B.P., which fall within the Late Glacial Maximum (LGM; 21000 ± 2000 years B.P). The calculated sedimentation rate for core GM42 (~0.013 cm/year) is lower than in core GM44 (0.022 cm/year), which is probably due to the variations in detrital sediment input and/or seafloor topography. The weathering indices such as chemical index of alteration (CIA), chemical index of weathering (CIW), and plagioclase index of alteration (PIA) suggested that the source area experienced low to moderate intensity of chemical weathering under warm to humid climatic conditions. The SiO2/Al2O3, Al2O3/Na2O, and K2O/Al2O3 ratio values indicated moderate to high compositional maturity. The major and trace element concentrations suggested that the sediments were likely derived from intermediate source rocks. The heavy metal contents indicated that the sediments were not contaminated by the industrial waste disposals supplied by the Coatzacoalcos River. The redox proxy sensitive elements such as V, Cr, Cu, and Zn indicated an oxic depositional environment for the deep-sea sediment cores. The application of discrimination diagrams for the geochemistry data revealed a passive margin setting for the sediment cores. The compositional variations observed at the upper sections (<30 cm) between the two sediment cores revealed that the type of detrital sediments supplied by the Coatzacoalcos River to the deep sea area is not uniform, which is also revealed by the variation in sedimentation rate.  相似文献   

12.
Foraminifers, being sensitive to minute changes, either undergo morphological changes or even disappear from the area completely due to pollution or under unfavourable conditions. The characteristics of foraminifers to incorporate the signature of presence of pollutants are considered to be an effective tool for temporal pollution monitoring studies. Totally, 12 offshore samples (both sediment and water) were taken along a normal profile along the coast of Cuddalore for pollution studies. Apart from foraminiferal studies, geochemical studies of the sediments collected are also undertaken to correlate and substantiate the findings. The near-shore area has a higher concentration of trace elements. If these concentrations exceed or go below permissible limits, it is collateral for the marine community and for those who consume these marine resources. The concentration of trace elements like lead, zinc, manganese, copper, chromium and nickel was illustrated to give an idea of the trace element concentration of the study area. The sedimentological studies reveal the organic matter and calcium carbonate content of the samples, and the bottom water measurements reveal the temperature, salinity and dissolved oxygen of sample locations. These are used to determine whether the conditions prevailing could sustain life. The ratio of living to dead species is also determined and correlated with sedimentological and geochemical parameters. Pollution studies have given way to identify morphological abnormalities in the species mainly in Spiroloculina, Quinqueloculina, Elphidium, etc. but we could not find many effects among the faunal assemblages because of the nature of the sediments found in that area.  相似文献   

13.
The geochemical analyses of fluvial-lacustrine aquifer sediments of the Kathmandu Valley have been made as a step in assessing the environment for the mobilization of arsenic in groundwater. Elements measured by X-ray fluorescence (XRF) include 4 major oxides (Fe2O3, TiO2, CaO, P2O5) and 14 trace elements (As, Pb, Zn, Cu, Ni, Cr, V, Sr, Y, Nb, Zr, Th, Sc and TS). Elution tests of 15 selected core samples were also carried out to determine the potential leaching of arsenic from the sediments. The XRF results show that average bulk concentrations of the major oxides and trace elements are similar to modern unconsolidated sediments and average upper continental crust. However, the abundance of elements varies with grain size, with higher concentrations in finer-size grades. Variations in elemental abundances within the basin are strongly controlled by sediment facies. The elution tests show that greater amounts of arsenic are generally eluted from the fine sediments, although the rates are variable. The results overall suggest that As concentrations in the bulk sediments are not a controlling factor for elevated As in the Kathmandu Basin groundwater, and the roles of other factors such as redox conditions and organic matter contents are likely to be more significant.  相似文献   

14.
Surficial sediment samples were collected at 47 stations in Little Traverse Bay, Lake Michigan, to determine the geochemical associations between certain rare earth elements (REE's) and trace metals. Each sample was analyzed for carbonate carbon, organic carbon, grain size, and the elements Al, Ca, Ce, Co, Cr, Eu, Fe, Hf, La, and Mn. Two distinct Ce subpopulatins were identified by graphical analysis, and an R-mode factor analysis was applied to data from the “enriched” Ce subpopulation (18 samples). Results show that the REE's and trace metals are primarily enriched in the authigenic phase of these sediments. Partial correlation analyses indicate that the REE's are primarily associated with hydrous Fe oxides relative to organic matter in this phase. The ratio of Ce/La concentrations increased markedly from the bay margins to the central trough of the bay, indicating that Ce, similar to Fe, exhibits a variable oxidation state in the authigenic phase of nearshore fine-grained sediments. The results of the present study suggest that the REE's and trace metals behave coherently in the authigenic phase of recent lacustrine sediments, and the REE's may be useful as geochemical tracers to differentiate between trace metal enrichments in surface sediments as a result of diagenesis and pollution loadings.  相似文献   

15.
Molybdenum mining in the Knabena—Kvina drainage basin (1918–1973) left more than eight million tons of tailings in two small lakes in the headwater area of the Knabena river. The piles, that reach above the water surface, were freely eroded until a dam was built to reduce the dispersion in 1976. Sampling of tailings and fluvial sediments took place almost 20 years later. Sampling media were natural sediment sources, 1-cm-thick slices of overbank sediments of various depths, material from the tailings pond, sandbars, stream sediments, fjord sediments, and integrated samples of floodplain surfaces (0–25 cm). In total 734 samples were collected. Chemical analysis (ICP-AES after aqua regia or HNO3 extraction) showed that overbank sediments at a certain depth represent the pre-industrial trace metal concentrations within the drainage basin. The tailings and recent fluvial sediments were enriched in approximately the same element suite. The highest enrichment factors were obtained for Cu (8–53) and Mo (22–57). Fluvial processes in the tailings pond have probably selectively eroded fine-grained, low-density particles. Thus, coarse chalcopyrite may have been left behind, while molybdate associated with fine-grained particles may have been selectively entrained causing dilution of Cu and enrichment of Mo in the downstream fluvial sediments. In the sandbars, the highest Cu and Mo concentrations were found in fine-grained sediments downstream of a low-gradient reach that act as a bedload trap. On the floodplains, it is seen that the first areas to be inundated in a flood situation (proximal to the river and in depressions) have the highest metal concentrations. For regional geochemical mapping it is suggested that overbank sediment profiles along river reaches with a laterally stable or slowly migrating channel, should be sampled. In such floodplains, pre-industrial overbank sediments are usually preserved at depth. In case of laterally unstable reaches upstream of the sampling point, polluted and unpolluted sediments may be interlayered or mixed. Therefore, samples should be collected from various depths or sedimentary units in such profiles. A similar sampling strategy should probably be adopted to detect vertical migration of elements especially in areas with acid rain and low bedrock buffer capacity. To obtain high contrasts between polluted and unpolluted drainage basins, the overbank sediment profiles should be within the proximal part of the floodplain.  相似文献   

16.
Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.  相似文献   

17.
Dredging and disposal of sediments onto agricultural soils is a common practice in industrial and urban areas that can be hazardous to the environment when the sediments contain heavy metals. This chemical hazard can be assessed by evaluating the mobility and speciation of metals after sediment deposition. In this study, the speciation of Zn in the coarse (500 to 2000 μm) and fine (<2 μm) fractions of a contaminated sediment dredged from a ship canal in northern France and deposited on an agricultural soil was determined by physical analytical techniques on raw and chemically treated samples. Zn partitioning between coexisting mineral phases and its chemical associations were first determined by micro-particle-induced X-ray emission and micro-synchrotron-based X-ray radiation fluorescence. Zn-containing mineral species were then identified by X-ray diffraction and powder and polarized extended X-ray absorption fine structure spectroscopy (EXAFS). The number, nature, and proportion of Zn species were obtained by a coupled principal component analysis (PCA) and least squares fitting (LSF) procedure, applied herein for the first time to qualitatively (number and nature of species) and quantitatively (relative proportion of species) speciate a metal in a natural system.The coarse fraction consists of slag grains originating from nearby Zn smelters. In this fraction, Zn is primarily present as sphalerite (ZnS) and to a lesser extent as willemite (Zn2SiO4), Zn-containing ferric (oxyhydr)oxides, and zincite (ZnO). In the fine fraction, ZnS and Zn-containing Fe (oxyhydr)oxides are the major forms, and Zn-containing phyllosilicate is the minor species. Weathering of ZnS, Zn2SiO4, and ZnO under oxidizing conditions after the sediment disposal accounts for the uptake of Zn by Fe (oxyhydr)oxides and phyllosilicates. Two geochemical processes can explain the retention of Zn by secondary minerals: uptake on preexisting minerals and precipitation with dissolved Fe and Si. The second process likely occurs because dissolved Zn and Si are supersaturated with respect to Zn phyllosilicate. EXAFS spectroscopy, in combination with PCA and LSF, is shown to be a meaningful approach to quantitatively determining the speciation of trace elements in sediments and soils.  相似文献   

18.
We present multi-element concentrations in the surface sediments from the offshore of Cauvery delta of southeast India to evaluate the impact of coastal pollution on the geochemical behaviour of surface deposits. For this study, 16 surface sediment samples were collected from the offshore of Cauvery delta of southeast India and were analysed using traditional XRF for various major (SiO2, Al2O3, MgO, Fe2O3, MnO, Na2O, K2O, CaO, P2O5, TiO2) and trace elements (Rb, Sr, Ba, Y, Zr, Nb, V, Cr, Co, Ni, Cu, Zn, Th, Pb) after powdering it to ASTM 230 (<63 μm). The main objectives of this study were to understand the geochemical behaviour of the coastal surface sediments and its performance and relation with the pollution indices and statistical analysis. To meet out the objective, pollution indices such as enrichment factor (EF), contamination factor (CF) and Geoaccumulation Index (I geo) were calculated and statistical analyses were performed to understand the relationship between the geochemical parameters. Both EF and I geo show the enrichment of Cu, Cr and Zr, whereas CF shows enrichment of Cu and Cr. Statistical analyses exhibit poor correlation between these elements and fine fraction indicating the insignificant role played by both grain size and organic matter. Strong positive association between Cu and Zn with CaCO3 exhibits the role of carbonates in precipitating these metals from the overlying water column possibly related to agricultural pollution. Distribution and association of other elements suggest the influence of mineralogy in geochemical composition of surface sediments. Based on this study, we suggest that environmental indices alone should not be considered for evaluating environmental conditions and a prior geogenic characterisation of the sediments is necessary.  相似文献   

19.
《Applied Geochemistry》2005,20(5):1017-1037
Some 434 stream sediment samples were collected in Central Japan for a nationwide geochemical mapping project. The resulting geochemical maps are compared with geological, mineral resource and land use maps. Spatial distribution patterns of elemental concentrations in stream sediments are determined mainly by surface geology. Elevated elemental concentrations of alkali elements, Be, Ga, Y, Cs, Ba, lanthanide (Ln), Tl, Th, and U are consistent with outcrop areas of granite, felsic volcanic rock, and accretionary complexes. High concentrations of MgO, Al2O3, P2O5, CaO, 3d transition metals, Zn, and Sr are present in sediments supplied from mafic volcanic rock, high pressure metamorphic rocks, and mafic-ultramafic rocks in accretionary complexes.A procedure is established and guidelines are set for a statistical test suite for geochemical mapping. Analysis of variance (ANOVA) and multiple comparison tests are effective for comparing means among the data subsets that are classified by parent lithological materials. Among the many procedures that have been proposed for multiple comparison tests, the Holm procedure was selected for this study. Multiple comparison statistically confirmed the correspondence of elemental abundance in stream sediments with surface geologies. However, visual interpretation of some elements is inconsistent with results of multiple comparison. According to the Holm procedure, the U content in stream sediments is affected not by granite, but by felsic volcanic rock. The Holm procedure clarifies that As, Sb, and Bi, that are not explained by the presence of mineral deposits, are enriched significantly in samples derived from accretionary complexes. Hydrothermal activity on the ocean floor might affect their levels of enrichment. Significant enrichment of Cu, Zn, Cd, Sn, Sb, Hg, and Pb observed in urban areas are also supported by the Holm procedure. The authors inferred that these sediment samples had been contaminated.  相似文献   

20.
本文以华南褶皱系五指山褶皱带北部加来地区地质特征为基础,进一步研究水系沉积物地球化学特征、土壤地球化学特征、岩石化学特征和矿物化学特征,探讨铷元素地球化学特征及其成因。研究表明:研究区内铷元素的水系沉积物异常、土壤地球化学异常、花岗岩类岩石化学特征和矿物化学特征基本吻合;本区花岗岩类中铷元素背景值普遍较高,但不同时期花岗岩类中铷元素背景值不一,中三叠世红岭花岗岩体中铷元素背景值最高;矿物原位LA-ICP-MS微量元素分析结果显示,花岗岩类中钾长石、白云母和黑云母是Rb2O的主要载体矿物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号