首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
The present study presents a review on the progressive development of the seismic zonation map of India both from official agencies and also from independent individual studies. The zonation map have been modified and updated regularly with the occurrence of major destructive earthquakes over the years in the Indian subcontinent with the addition of new data. This study discusses the criteria chosen for the progressive zonation and the major earthquakes that were responsible for retrospection of the earlier published maps. The seismic zonation maps of India have also been prepared by various independent workers by adopting different approaches to achieve the purpose of the zonation. Despite the endeavors from various sources to provide a solution for the problem of earthquake hazards in India, there were many limitations on the zonation map as it gives the picture at a regional scale mostly on the bedrock level without addressing the local site conditions. But nevertheless, the seismic zonation map gives basic guidelines for any region to know the hazard scenario and if any city or urban population is under threat from seismic point of view, further site specific seismic microzonation may be carried out. In the International scenario, the Global Seismic Hazard Assessment Program (GSHAP) in 1999 prepared a hazard map for world in terms of peak ground acceleration (PGA) with a 10% probability of exceedance in 50 years, but it turned out to be an underestimation of the hazard parameter when compared with the observed PGA. To tackle the problem of seismic hazards, there was a need to have a detail study on the local site conditions in terms of its geological, geophysical and geotechnical properties. With the advent of better instrumentation and knowledge on the mechanics of earthquakes, it was possible to identify zones of hazards at a local level and this gives rise to the study of seismic microzonation. Seismic microzonation work has been carried out in India in some of the strategic important mega cities and industrial build up that has the potential of being damaged from future earthquakes, as has been shown in the past. Though the microzonation map is not the final output map, as it can still be updated at later stage with more input data, it does provide a more realistic picture on the site specific seismic hazard.  相似文献   

2.
Indian peninsular shield, which was once considered to be seismically stable, is experiencing many earthquakes recently. As part of the national level microzonation programme, Department of Science and Technology, Govt. of India has initiated microzonation of greater Bangalore region. The seismic hazard analysis of Bangalore region is carried out as part of this project. The paper presents the determination of maximum credible earthquake (MCE) and generation of synthetic acceleration time history plot for the Bangalore region. MCE has been determined by considering the regional seismotectonic activity in about 350 km radius around Bangalore city. The seismotectonic map has been prepared by considering the faults, lineaments, shear zones in the area and historic earthquake events of more than 150 events. Shortest distance from the Bangalore to the different sources is measured and then peak ground acceleration (PGA) is calculated for the different source and moment magnitude. Maximum credible earthquake found in terms of moment magnitude is 5.1 with PGA value of 0.146 g at city centre with assuming the hypo central distance of 15.88 km from the focal point. Also, correlations for the fault length with historic earthquake in terms of moment magnitude, yields (taking the rupture fault length as 5% of the total fault length) a PGA value of 0.159 g. Acceleration time history (ground motion) and a response acceleration spectrum for the corresponding magnitude has been generated using synthetic earthquake model considering the regional seismotectonic parameters. The maximum spectral acceleration obtained is 0.332 g for predominant period of 0.06 s. The PGA value and synthetic earthquake ground motion data from the identified vulnerable source using seismotectonic map will be useful for the PGA mapping and microzonation of the area.  相似文献   

3.
This paper examines the variability of seismic activity observed in the case of different geological zones of peninsular India (10°N–26°N; 68°E–90°E) based on earthquake catalog between the period 1842 and 2002 and estimates earthquake hazard for the region. With compilation of earthquake catalog in terms of moment magnitude and establishing broad completeness criteria, we derive the seismicity parameters for each geologic zone of peninsular India using maximum likelihood procedure. The estimated parameters provide the basis for understanding the historical seismicity associated with different geological zones of peninsular India and also provide important inputs for future seismic hazard estimation studies in the region. Based on present investigation, it is clear that earthquake recurrence activity in various geologic zones of peninsular India is distinct and varies considerably between its cratonic and rifting zones. The study identifies the likely hazards due to the possibility of moderate to large earthquakes in peninsular India and also presents the influence of spatial rate variation in the seismic activity of this region. This paper presents the influence of source zone characterization and recurrence rate variation pattern on the maximum earthquake magnitude estimation. The results presented in the paper provide a useful basis for probabilistic seismic hazard studies and microzonation studies in peninsular India.  相似文献   

4.
A first order seismic microzonation map of Delhi is prepared using five thematic layers viz., Peak Ground Acceleration (PGA) contour, different soil types at 6 m depth, geology, groundwater fluctuation and bedrock depth, integrated on GIS platform. The integration is performed following a pair-wise comparison of Analytical Hierarchy Process (AHP), wherein each thematic map is assigned weight in the 5-1 scale: depending on its contribution towards the seismic hazard. Following the AHP, the weightage assigned to each theme are: PGA (0.333), soil (0.266), geology (0.20), groundwater (0.133) and bedrock depth (0.066). The thematic vector layers are overlaid and integrated using GIS. On the microzonation theme, the Delhi region has been classified into four broad zones of vulnerability to the seismic hazard. They are very high (> 52%), high (38–52%), moderate (23–38%) and less ( < 23%) zones of seismic hazard. The “very high” seismic hazard zone is observed where the maximum PGA varies from 140 to 210 gal for a finite source model of Mw 8.5 in the central seismic gap. A site amplification study from local and regional earthquakes for Delhi region using Delhi Telemetry Network data shows a steeper site response gradient in the eastern side of the Yamuna fluvial deposits at 1.5 Hz. The ‘high’ seismic hazard zone occupies most of the study area where the PGA value ranges from 90 to 140 gal. The ‘moderate’ seismic hazard zone occurs on either side of the Delhi ridge with PGA value varying from 60 to 90 gal. The ‘less’ seismic hazard zone occurs in small patches distributed along the study area with the PGA value less than 60 gal. Site response studies, PGA distribution and destruction pattern of the Chamoli earthquake greatly corroborate the seismic hazard zones estimated through microzonation on GIS platform and also establishes the methodology incorporated in this study.  相似文献   

5.
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.  相似文献   

6.
A methodology to model seismic microzonation maps is required in the hazard mitigation decision plans of the earthquake prone areas. The stage of disaster preparedness for new residential places is of great importance for detailed seismic microzonation models. The effects of local geological and geotechnical site conditions were considered in order to establish site characterization as the initial stage of the models in this study. Dynamic soil properties based on the empirical correlations between shear wave velocity (V s) and standard penetration test blow counts were taken into account in order to define representative soil profiles extending down to the engineering bedrock. One-dimensional site response analyses were performed to analyze earthquake characteristics on the ground surface. The layers for soil classification, geology, depth to groundwater level, amplification, distance to fault, slope and aspect, and liquefaction-induced ground deformation potential of the study area were prepared in seismic microzonation models. The study area, Erbaa, is placed along the seismically active North Anatolian Fault Zone. Final seismic microzonation map of the study area was evaluated applying different GIS-based Multi-Criteria Decision Analysis (MCDA) techniques. Two of the MCDA techniques, simple additive weighting and analytical hierarchical process (AHP), are considered during the evaluation step of the final seismic microzonation map. The comparison is made in order to distinguish two different maps based on these MCDA techniques. Eventually, AHP-based seismic microzonation map is more preferable for the seismic design purposes in this study.  相似文献   

7.
A comprehensive analytical as well as numerical treatment of seismological, geological, geomorphological and geotechnical concepts has been implemented through microzonation projects in the northeast Indian provinces of Sikkim Himalaya and Guwahati city, representing cases of contrasting geological backgrounds — a hilly terrain and a predominantly alluvial basin respectively. The estimated maximum earthquakes in the underlying seismic source zones, demarcated in the broad northeast Indian region, implicates scenario earthquakes of M W 8.3 and 8.7 to the respective study regions for deterministic seismic hazard assessments. The microzonation approach as undertaken in the present analyses involves multi-criteria seismic hazard evaluation through thematic integration of contributing factors. The geomorphological themes for Sikkim Himalaya include surface geology, soil cover, slope, rock outcrop and landslide integrated to achieve geological hazard distribution. Seismological themes, namely surface consistent peak ground acceleration and predominant frequency were, thereafter, overlaid on and added with the geological hazard distribution to obtain the seismic hazard microzonation map of the Sikkim Himalaya. On the other hand, the microzonation study of Guwahati city accounts for eight themes — geological and geomorphological, basement or bedrock, landuse, landslide, factor of safety for soil stability, shear wave velocity, predominant frequency, and surface consistent peak ground acceleration. The five broad qualitative hazard classifications — ‘low’, ‘moderate’, ‘high’, ‘moderate high’ and ‘very high’ could be applied in both the cases, albeit with different implications to peak ground acceleration variations. These developed hazard maps offer better representation of the local specific seismic hazard variation in the terrain.  相似文献   

8.
Antakya city is at risk because of strong earthquakes occurring in the area, and different soil conditions that can produce variation of the ground motion amplification. Microzonation of cities provides a basis for site-specific hazard analysis in urban settlements. In particular, seismic microzonation can be provided by means of detailed seismic assessment of the area, including earthquake recordings and geological studies. In this paper, we propose a preliminary microzonation map for the city of Antakya, based on the variation of the dominant periods and shear velocities of the sediments covering the area. The periods are retrieved from microtremor measurements conducted at 69 sites, using the horizontal-to-vertical spectral ratio technique. The results of microtremor analysis were compared with data obtained from refraction microtremor (ReMi) measurements at four profiles crossing the studied area. According to the classification of dominant periods, Antakya city can be divided into five zones, probably prone to different levels of seismic hazard. The shorter natural periods are in inner Antakya and both the sides of Asi River (i.e., northern and southern parts). The eastern and western parts of Antakya have maximum dominant periods. The V s 30 values were calculated by using the ReMi method along the profiles. Antakya city has V s 30 values in the range of category C of the national earthquake hazard reduction programme site classification.  相似文献   

9.
India is prone to earthquake hazard; almost 65 % area falls in high to very high seismic zones, as per the seismic zoning map of the country. The Himalaya and the Indo-Gangetic plains are particularly vulnerable to high seismic hazard. Any major earthquake in Himalaya can cause severe destruction and multiple fatalities in urban centers located in the vicinity. Seismically induced ground motion amplification and soil liquefaction are the two main factors responsible for severe damage to the structures, especially, built on soft sedimentary environment. These are essentially governed by the size of earthquake, epicentral distance and geology of the area. Besides, lithology of the strata, i.e., sediment type, grain size and their distribution, thickness, lateral discontinuity and ground water depth, play an important role in determining the nature and degree of destruction. There has been significant advancement in our understanding and assessment of these two phenomena. However, data from past earthquakes provide valuable information which help in better estimation of ground motion amplification and soil liquefaction for evaluation of seismic risk in future and planning the mitigation strategies. In this paper, we present the case studies of past three large Indian earthquakes, i.e., 1803 Uttaranchal earthquake (Mw 7.5); 1934 Bihar–Nepal earthquake (Mw 8.1) and 2001 Bhuj earthquake (Mw 7.7) and discuss the role of soft sediments particularly, alluvial deposits in relation to the damage pattern due to amplified ground motions and soil liquefaction induced by the events. The results presented in the paper are mainly focused around the sites located on the river banks and experienced major destruction during these events. It is observed that the soft sedimentary sites located even far from earthquake epicenter, with low water saturation, experienced high ground motion amplification; while the sites with high saturation level have undergone soil liquefaction. We also discuss the need of intensifying studies related to ground motion amplification and soil liquefaction in India as these are the important inputs for detailed seismic hazard estimation.  相似文献   

10.
Earthquake hazard zonation of Sikkim Himalaya using a GIS platform   总被引:2,自引:1,他引:1  
An earthquake hazard zonation map of Sikkim Himalaya is prepared using eight thematic layers namely Geology (GE), Soil Site Class (SO), Slope (SL), Landslide (LS), Rock Outcrop (RO), Frequency–Wavenumber (F–K) simulated Peak Ground Acceleration (PGA), Predominant Frequency (PF), and Site Response (SR) at predominant frequencies using Geographic Information System (GIS). This necessitates a large scale seismicity analysis for seismic source zone classification and estimation of maximum earthquake magnitude or maximum credible earthquake to be used as a scenario earthquake for a deterministic or quasi-probabilistic seismic scenario generation. The International Seismological Center (ISC) and Global Centroid Moment Tensor (GCMT) catalogues have been used in the present analysis. Combining b-value, fractal correlation dimension (Dc) of the epicenters and the underlying tectonic framework, four seismic source zones are classified in the northeast Indian region. Maximum Earthquake of M W 8.3 is estimated for the Eastern Himalayan Zone (EHZ) and is used to generate the seismic scenario of the region. The Geohazard map is obtained through the integration of the geological and geomorphological themes namely GE, SO, SL, LS, and RO following a pair-wise comparison in an Analytical Hierarchy Process (AHP). Detail analysis of SR at all the recording stations by receiver function technique is performed using 80 significant events recorded by the Sikkim Strong Motion Array (SSMA). The ground motion synthesis is performed using F–K integration and the corresponding PGA has been estimated using random vibration theory (RVT). Testing for earthquakes of magnitude greater than M W 5, a few cases presented here, establishes the efficacy and robustness of the F–K simulation algorithm. The geohazard coverage is overlaid and sequentially integrated with PGA, PF, and SR vector layers, in order to evolve the ultimate earthquake hazard microzonation coverage of the territory. Earthquake Hazard Index (EHI) quantitatively classifies the terrain into six hazard levels, while five classes could be identified following the Bureau of Indian Standards (BIS) PGA nomenclature for the seismic zonation of India. EHI is found to vary between 0.15 to 0.83 quantitatively classifying the terrain into six hazard levels as “Low” corresponding to BIS Zone II, “Moderate” corresponding to BIS Zone III, “Moderately High” belonging to BIS Zone IV, “High” corresponding to BIS Zone V(A), “Very High” and “Severe” with new BIS zones to Zone V(B) and V(C) respectively.  相似文献   

11.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

12.
Seismic hazard in mega city Kolkata, India   总被引:2,自引:1,他引:1  
The damages caused by recent earthquakes in India have been a wake up call for people to take proper mitigation measures, especially the major cities that lie in the high seismic hazard zones. Kolkata City, with thick sediment deposit (∼12 km), one of the earliest cities of India, is an area of great concern as it lies over the Bengal Basin and lies at the boundary of the seismic zones III and IV of the zonation map of India. Kolkata has been affected by the 1897 Shillong earthquake, the 1906 Calcutta earthquake, and the 1964 Calcutta earthquake. An analysis on the maximum magnitude and b-value for Kolkata City region is carried out after the preparation of earthquake catalog from various sources. Based on the tectonic set-up and seismicity of the region, five seismic zones are delineated, which can pose a threat to Kolkata in the event of an earthquake. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ), and Zone 5: Shield Zone (SZ). The maximum magnitude (m max) for Zones 1, 2, 3, 4, and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. A probability of 10% exceedance value in 50 years is used for each zone. The probabilities of occurrences of earthquakes of different magnitudes for return periods of 50 and 100 years are computed for the five seismic zones. The Peak Ground Acceleration (PGA) obtained for Kolkata City varies from 0.34 to 0.10 g.  相似文献   

13.
In the present study, an attempt has been made to evaluate the seismic hazard considering local site effects by carrying out detailed geotechnical and geophysical site characterization in Bangalore, India to develop microzonation maps. An area of 220 km2, encompassing Bangalore Mahanagara Palike (BMP) has been chosen as the study area. Seismic hazard analysis and microzonation of Bangalore are addressed in three parts: in the first part, estimation of seismic hazard is done using seismotectonic and geological information. Second part deals with site characterization using geotechnical and shallow geophysical techniques. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis (using the program SHAKE2000) using both standard penetration test (SPT) data and shear wave velocity data from multichannel analysis of surface wave (MASW) survey. Further, field experiments using microtremor studies have also been carried out for evaluation of predominant frequency of the soil columns. The same has been assessed using 1-D ground response analysis and compared with microtremor results. Further, the Seed and Idriss simplified approach has been adopted to evaluate the soil liquefaction susceptibility and liquefaction resistance assessment. Microzonation maps have been prepared with a scale of 1:20,000. The detailed methodology, along with experimental details, collated data, results and maps are presented in this paper.  相似文献   

14.
An important step in effectively reducing seismic risk and the vulnerability of a city located in an earthquake prone area is to conduct a ground motion microzonation study for the desired return period. The International Institute of Earthquake Engineering and Seismology (IIEES) initiated a number of seismic microzonation projects for Iran. This paper presents the steps followed by IIEES in ground motion microzonation. IIEES performs both probabilistic and deterministic seismic hazard analysis. IIEES uses his own fault map for seismotectonic studies and develops modulus and damping curves for the soils in the study area. The experience of ground motion microzonation shows that in almost all cases, the estimated 475-year peak ground acceleration (PGA) values are higher than the PGA proposed by the Iranian seismic code. Although ground motion microzonation in Iran has some shortcomings, IIEES is making new improvement. This includes development in deterministic seismic hazard analysis, two-dimensional and three-dimensional modelling of basin and topographical effects, using microtremor measurements to find shear-wave velocity profiles in high-density urban areas and providing maps for spectral acceleration in the study area.  相似文献   

15.
The seismically active Northwest (NW) Himalaya falls within Seismic Zone IV and V of the hazard zonation map of India. The region has suffered several moderate (~25), large-to-great earthquakes (~4) since Assam earthquake of 1897. In view of the major advancement made in understanding the seismicity and seismotectonics of this region during the last two decades, an updated probabilistic seismic hazard map of NW Himalaya and its adjoining areas covering 28–34°N and 74–82°E is prepared. The northwest Himalaya and its adjoining area is divided into nineteen different seismogenic source zones; and two different region-specific attenuation relationships have been used for seismic hazard assessment. The peak ground acceleration (PGA) estimated for 10% probability of exceedance in 50 and 10 years at locations defined in the grid of 0.25 × 0.25°. The computed seismic hazard map reveals longitudinal variation in hazard level along the NW Himalayan arc. The high hazard potential zones are centred around Kashmir region (0.70 g/0.35 g), Kangra region (0.50 g/0.020 g), Kaurik-Spitti region (0.45 g/0.20 g), Garhwal region (0.50 g/0.20 g) and Darchula region (0.50 g/0.20 g) with intervening low hazard area of the order of 0.25 g/0.02 g for 10% probability in 50 and 10 years in each region respectively.  相似文献   

16.
Nuclear power plants are designed to prevent the hazardous effects of the earthquakes and any external events to keep the safety of the plant. Ninety-one shallow seismic refraction profiles were performed to determine shear wave velocity of the engineering layers at the site of El Dabaa area that is situated to the northern coastline of Egypt for seismic hazard microzonation evaluation according to hazard index values. A microzonation is a procedure of delineating an area into individual zones having different ranks of numerous seismic hazards. This will aid in classifying areas of high seismic risk which is vigorous for industrial design of nuclear structures. The site response analysis requires the characterization of subsurface materials considering local subsurface profiles of the site. Site classification of the area under investigation was undertaken using P- and S-waves and available borehole data. The studied nuclear power plant site has been characterized as per NEHRP site classification using an average velocity of transverse wave (V s 30 ) of depth 30 m which acquired from seismic survey. This site was categorized into two site classes: the major one is “site class B,” and the minor one is “site class A.” The attenuation coefficient, the damping ratio and the liquefaction potential are geotechnical parameters which were derived from P- and S-waves, and have their major effects on the seismic hazard contribution. 1D ground response analysis was carried out in the places of seismic profiles inside the site for estimating the amount of ground quaking using peak ground acceleration (PGA), site amplification, predominant frequency and spectral accelerations on the surface of ground by the DEEPSOIL software package. Seven factors (criteria) deliberated to assess the earthquake hazard index map are: (1) the peak ground acceleration at the bedrock, (2) the amplification of the site, (3) the liquefaction potential, (4) the main frequency of the earthquake signal, (5) the average V s of the first 30 m from the ground surface, (6) the depth to the groundwater and (7) the depth to the bedrock. These features were exemplified in normalized maps after uniting them to 0–1 scores according to some criteria by the minimum and maximum values as linear scaling points. Multi-criteria evaluation is an application of multi-criteria decision analysis theory that used for developing a seismic hazard index map for a nuclear power plant site at El Dabaa area in ArcGIS 10.1 software. Two models of decision making were used in this work for seismic hazard microzonation. The analytic hierarchy process model was applied to conduct the relative weights of the criteria by pairwise comparison using Expert Choice Software. An earthquake hazard index map was combined using Weighted Linear Combination model of the raster weighted overlay tool of ArcGIS 10.1. The results indicated that most of the study site of the nuclear power plant is a region of low to moderate hazard; its values are ranging between 0.2 and 0.4.  相似文献   

17.
In view of the major advancement made in understanding the seismicity and seismotectonics of the Indian region in recent times, an updated probabilistic seismic hazard map of India covering 6–38°N and 68–98°E is prepared. This paper presents the results of probabilistic seismic hazard analysis of India done using regional seismic source zones and four well recognized attenuation relations considering varied tectonic provinces in the region. The study area was divided into small grids of size 0.1° × 0.1°. Peak Horizontal Acceleration (PHA) and spectral accelerations for periods 0.1 s and 1 s have been estimated and contour maps showing the spatial variation of the same are presented in the paper. The present study shows that the seismic hazard is moderate in peninsular shield, but the hazard in most parts of North and Northeast India is high.  相似文献   

18.
An earthquake is a natural phenomenon which is very frequent in Himalayan region in India. In southern peninsula India, the spatial occurrence of earthquake is irregular, whereas the northeastern, the north and the northwestern Himalayan parts of India are subjected to regular occurrences of earthquakes as they mark the boundary of the Eurasian and the Indian Plate. Hence, it is important to study and develop spatial model and information tool to understand the seismic phenomenon. The geoinformatic technique plays a significant role in the analysis of geodatabase to study the natural disaster and hazard assessment. The main aim of the present study is to develop geospatial model based on earthquake hazard assessment tool (EaHaAsTo) through integrated geological and geoinformatic techniques to better understand the earthquake occurrences zones. The spatial and non-spatial data were collected and integrated in a GIS to prepare geospatial databases. The thematic and quantitative databases were generated, and analysis was carried out to understand the seismic characteristics of the study area. The geospatial model was developed by integrating thematic databases and geospatial analyzed using weighted linear combination method. Finally, the GIS based on customized EaHaAsTo was developed to visualize the output of the model in qualitative and quantitative forms.  相似文献   

19.
Quantification of seismic activity is one of the most challenging problems faced by earthquake engineers in probabilistic seismic hazard analysis. Currently, this problem has been attempted using empirical approaches which are based on the regional earthquake recurrence relations from the available earthquake catalogue. However, at a specified site of engineering interest, these empirical models are associated with large number of uncertainties due to lack of sufficient data. Due to these uncertainties, engineers need to develop mechanistic models to quantify seismic activity. A wide range of techniques for modeling continental plates provides useful insights on the mechanics of plates and their seismic activity. Among the different continental plates, the Indian plate experiences diffused seismicity. In India, although Himalaya is regarded as a plate boundary and active region, the seismicity database indicates that there are other regions in the Indian shield reporting sporadic seismic activity. It is expected that mechanistic models of Indian plate, based on finite element method, simulate stress fields that quantify the seismic potential of active regions in India. This article explores the development of a finite element model for Indian plate by observing the simulated stress field for various boundary conditions, geological and rheological conditions. The study observes that the magnitude and direction of stresses in the plate is sensitive to these conditions. The numerical analysis of the models shows that the simulated stress field represents the active seismic zones in India.  相似文献   

20.
Gujarat is one of the fastest-growing states of India with high industrial activities coming up in major cities of the state. It is indispensable to analyse seismic hazard as the region is considered to be most seismically active in stable continental region of India. The Bhuj earthquake of 2001 has caused extensive damage in terms of causality and economic loss. In the present study, the seismic hazard of Gujarat evaluated using a probabilistic approach with the use of logic tree framework that minimizes the uncertainties in hazard assessment. The peak horizontal acceleration (PHA) and spectral acceleration (Sa) values were evaluated for 10 and 2?% probability of exceedance in 50?years. Two important geotechnical effects of earthquakes, site amplification and liquefaction, are also evaluated, considering site characterization based on site classes. The liquefaction return period for the entire state of Gujarat is evaluated using a performance-based approach. The maps of PHA and PGA values prepared in this study are very useful for seismic hazard mitigation of the region in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号