首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
International Journal of Earth Sciences - The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj–Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic...  相似文献   

2.
This study concentrates on the petrological and geochemical investigation of mafic rocks embedded within the voluminous Triassic June Complex of the central Sanandaj–Sirjan zone (Iran), which are crucial to reconstruct the geodynamics of the Neotethyan passive margin. The Triassic mafic rocks are alkaline to sub-alkaline basalts, containing 43.36–49.09 wt% SiO2, 5.19–20.61 wt% MgO and 0.66–4.59 wt% total alkalis. Based on MgO concentrations, the mafic rocks fall into two groups: cumulates (Mg# = 51.61–58.94) and isotropic basaltic liquids (Mg# = 24.54–42.66). In all samples, the chondrite-normalized REE patterns show enrichment of light REEs with variable (La/Yb)N ratios ranging from 2.48 to 9.00, which confirm their amalgamated OIB-like and E-MORB-like signatures. Enrichment in large-ion lithophile elements and depletion in high field strength elements (HFSE) relative to the primitive mantle further support this interpretation. No samples point to crustal contamination, all having undergone fractionation of olivine + clinopyroxene + plagioclase. Nevertheless, elemental data suggest that the substantial variations in (La/Sm)PM and Zr/Nb ratios can be explained by variable degrees of partial melting rather than fractional crystallization from a common parental magma. The high (Nb/Yb)PM ratio in the alkaline mafic rocks points to the mixing of magmas from enriched and depleted mantle sources. Abundant OIB alkaline basalts and rare E-MORB appear to be linked to the drifting stage on the northern passive margin of the Neotethys Ocean.  相似文献   

3.
4.
The Sargaz Cu–Zn massive sulfide deposit is situated in the southeastern part of Kerman Province, in the southern Sanandaj–Sirjan Zone of Iran. The stratigraphic footwall of the Sargaz deposit is Upper Triassic to Lower Jurassic (?) pillowed basalt, whereas the stratigraphic hanging wall is andesite. Mafic volcanic rocks are overlain by andesitic volcaniclastics and volcanic breccias and locally by heterogeneous debris flows. Rhyodacitic flows and volcaniclastics overlie the sequence of basaltic and andesitic rocks. Based on the bimodal nature of volcanism, the regional geologic setting and petrochemistry of the volcanic rocks, we suggest massive sulfide mineralization in the Sargaz formed in a nascent ensialic back-arc basin. The current reserves (after ancient mining) of the Sargaz deposit are 3 Mt at 1.34% Cu, 0.38% Zn, 0.08%Pb, 0.24 g/t Au, and 7 g/t Ag. The structurally dismembered massive sulfide lens is zoned from a pyrite-rich base, to a pyrite?±?chalcopyrite-rich central part, and a sphalerite–chalcopyrite-rich upper part, with a sphalerite-rich zone lateral to the upper part. The main sulfide mineral is pyrite, with lesser chalcopyrite and sphalerite. The feeder zone, comprised of a vein stockwork consists of quartz–sulfide–sericite pesudobreccia and, in the deepest part, chlorite–quartz–pyrite pesudobreccia. Footwall hydrothermal alteration extends at least 70–80 m below the massive sulfide lens and more than a hundred meters along strike from the massive sulfide lens. Jasper and Fe–Mn bearing chert horizons lateral to the sulfide deposit represent low-temperature hydrothermal precipitates of the evolving hydrothermal system. Based on mineral textures and paragenetic relationships, the growth history of the Sargaz deposit is complex and includes: (1) early precipitation of sulfides (protore) on the seafloor as precipitation of fine-grained anhedral pyrite, sphalerite, quartz, and barite; (2) anhydrite precipitation in open spaces and mineral interstices within the sulfide mound followed by its subsequent dissolution, formation of breccia textures, and mound clasts and precipitation of coarse-grained pyrite, sphalerite, tetrahedrite–tennantite, galena and barite; (3) replacement of pre-existing sulfides by chalcopyrite precipitated at higher temperatures (zone refining); (4) continued “refining” led to the dissolution of stage 3 chalcopyrite and formation of a base-metal-depleted pyrite body in the lowermost part of the massive sulfide lens; (5) carbonate veins were emplaced into the sulfide lens, replacing stage 2 barite. The δ34S composition of the sulfides ranges from +2.8‰ to +8.5‰ (average, +5.6‰) with a general increase of δ34S ratios with depth within the massive sulfide lens and underlying stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones.  相似文献   

5.
The metasedimentary and granitoid rocks of the Soresat Metamorphic Complex occur along the northern margin of the Sanandaj–Sirjan Zone in northwest Iran. Four different deformational events (D1–D4) are recorded in the Soresat Metamorphic Complex. The D1 and D2 progressive deformation events resulted from north-northeast–south-southwest regional horizontal shortening due to the subduction of Neo-Tethys oceanic lithosphere beneath the Sanandaj–Sirjan Zone. Post-suturing convergence between Arabia and Iran, which resulted in a right lateral-reverse displacement along the suture caused the north-northwest–south-southeast horizontal shortening of D3. D4 is recorded by normal faulting. Andalusite, cordierite and sillimanite (fibrolite) record the thermal peak (with a geothermal gradient >30°C/km). Field and microscopic studies of intruded granitoid rocks in the Soresat Metamorphic Complex divide them into three major groups: (i) syn-deformation (syn-D2) granitic gneiss; (ii) late- to post-deformation (late- to post-D2) granites and granodiorites; and (iii) post-deformation (post-D2) alkali granites.  相似文献   

6.
Cherty marbles of Hasan-Robat area, northwest of Isfahan, in the Sanandaj–Sirjan Zone of Iran preserves evidences of multiple deformational events. The Sanandaj–Sirjan Zone is the inner crystalline zone of the Zagros Orogen, which has been highly deformed and exhumed during continental collision between the Arabian Plate and Central Iran. The Hasan-Robat area is an example of the exposed Precambrian–Paleozoic basement rocks that stretched along two NW–SE-trending faults and located in the inner part of the HasanRobat positive flower strcuture. The Hasan-Robat marbles record a complex shortening and shearing history. This lead to the development of disharmonic ptygmatic folds with vertical to sub-vertical axes and some interference patterns of folding that may have been created from deformations during the Pan-African Orogeny and later phases. Based on this research, tectonic evolution of the Hasan-Robat area is interpreted as the product of three major geotectonic events that have been started after Precambrian to Quaternary: (1) old deformation phases (2) contractional movements and (3) strike-slip movements. Different sets and distributions of joints, faults and folds are confirmed with effect of several deformational stages of the area and formation of the flower structure.  相似文献   

7.
International Journal of Earth Sciences - The presence of the Bashkirian–Moscovian (lower Pennsylvanian) sequence with mixed siliciclastics and fossil-rich carbonates has long been known from...  相似文献   

8.
Based on analyses of calcite twins, we constrain the tectonic history of the Paleozoic Sargaz complex within the SE part of the Sanandaj–Sirjan zone (hinterland domain of the Zagros orogen), SE Iran. The mean width of measured calcite twins was 1.97 μm, corresponding to the width of type II twins; variations in twin width with twin density indicate that calcite twinning in the study area occurred at temperatures of between 170 and 200°C. These results support the interpretation that the twins developed at a shallower depth and lower temperature than those of greenschist facies metamorphism recorded in this complex, and that twinning is therefore mainly a late, post-metamorphic deformation process. The c-axis fabrics of the studied samples are monoclinic, consisting of an intense point maximum located slightly anticlockwise of the normal to the shear plane; this asymmetry indicates non-coaxial deformation and a dextral component of shear in the thrust zones. The geometric relationship between stress axes and bedding reveals that the reconstructed stress tensors mainly post-date F1-folding. Compressional stress axes are oriented NE–SW. This compressional stress was probably related to the (oblique) subduction of the Neotethys beneath Central Iran by Middle Triassic–Jurassic times, during the Cimmerian orogeny.  相似文献   

9.
The Sanandaj–Sirjan Zone contains the metamorphic core of the Zagros continental collision zone in western Iran. The zone has been subdivided into the following from southwest to northeast: an outer belt of imbricate thrust slices (radiolarite, Bisotun, ophiolite and marginal sub-zones, which consist of Mesozoic deep-marine sediments, shallow-marine carbonates, oceanic crust and volcanic arc, respectively) and an inner complexly deformed sub-zone (late Palaeozoic–Mesozoic passive margin succession). Rifting and sea-floor spreading of Tethys occurred in the Permian to Triassic but in the Sanandaj–Sirjan Zone extension-related successions are mainly of Late Triassic age. Subduction of Tethyan sea floor in the Late Jurassic to Cretaceous produced deformation, metamorphism and unconformities in the marginal and complexly deformed sub-zones. Deformation climaxed in the Late Cretaceous when a major southwest-vergent fold belt formed associated with greenschist facies metamorphism and post-dated by abundant Palaeogene granitic plutons. In the southwest of the zone a Late Cretaceous island arc—passive margin collision occurred with ophiolite emplacement onto the northern Arabian margin similar to that in Oman. Final closure of Tethys was not completed until the Miocene when Central Iran collided with the northeast Arabian margin.  相似文献   

10.
The granitic unit is a component of the Naqadeh plutonic complex, NW of Sanandaj–Sirjan Zone (NW Iran). This unit is composed of high-K calc-alkaline, slightly peraluminous (ASI?=?1.12–1.17) evolved monzogranites. These monzogranites have 41.85?±?0.81 Ma (zircon U–Pb sensitive, high-resolution ion microprobe (SHRIMP) age) with two inherited zircon ages of 98.5?±?1.7 and 586.6?±?13.1 Ma, respectively. The only enclave type consists of quartz-amphibolite enclaves indicating residual parental rocks. Chemical and isotopic (87Sr/86Sr40Ma?=?0.708638; εNd40Ma?=??4.26) characteristics of monzogranites suggest that they could be derived by partial melting of crustal mafic rocks followed by some assimilation of metasedimentary rocks. With regards to inherited zircon age and quartz-amphibolite composition of Naqadeh granite, the old mafic rocks of this complex (Naqadeh dioritic rocks with ~100 Ma) can be considered as parental rocks, and their partial melting under high water content, and assimilation of produced melt by metasedimentary rocks, would lead to the generation of a Naqadeh granitic unit.  相似文献   

11.
In regional exploration programs, the distribution of elements in known mineral deposits can be used as a guide for the classification of deposits, search for new prospects and modeling ore deposit patterns. The Sanandaj–Sirjan Zone (SSZ) is a major metallogenic zone in Iran, containing lead and zinc, iron, gold, copper deposits. In the central part of the SSZ, lead and zinc mineralization is widespread and hitherto exploration has been based on geological criteria. In this study, we used clustering techniques applied to element distribution for classification lead and zinc deposits in the central part of the SSZ. The hierarchical clustering technique was used to characterize the elemental pattern. Elements associated with lead and zinc deposits were separated into four clusters, encompassing both ore elements and their host rock-forming elements. It is shown that lead and zinc deposits in the central SSZ belong to two genetic groups: a MVT type hosted by limestone and dolomites and a SEDEX type hosted by shale, volcanic rocks and sandstone. The results of elemental clustering were used for pattern recognition by the K-means method and the respective deposits were classified into four distinct categories. K-means clustering also reveals that the elemental associations and spatial distribution of the lead and zinc deposits exhibit zoning in the central part of the SSZ. The ratios of ore-forming elements (Sb, Cd, and Zn) vs. (Pb and Ag) show zoning along an E–W trend, while host rock-forming elements (Mn, Ca, and Mg) vs. (Ba and Sr) show a zoning along a SE–NW trend. Large and medium deposits occur mainly in the center of the studied area, which justify further exploration around occurrences and abandoned mines in this area. The application of a pattern recognition method based on geochemical data from known mineralization in the central SSZ, and the classification derived from it, uncover elemental zoning, identify key elemental associations for further geochemical exploration and the potential to discover possible target areas for large to medium size ore deposits. This methodology can be applied in a similar way to search for new ore deposits in a wide range of known metallogenic zones.  相似文献   

12.
The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275–375, 375–500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.  相似文献   

13.
Kilometer-scale, shallowly dipping, NW-striking top-to-the NE reverse and dextral strike-slip shear zones occur in metamorphic rocks of north Golpaygan. These metamorphic rocks are exposed at the NE margin of the central part of the Sanandaj–Sirjan zone in the hinterland of the Zagros orogen. NW-striking top-to-the NE normal shear zones were also found in a small part of the study area. Structural evidence of three deformation stages were found. Pre-mylonitization metamorphic mineral growth happened during D1. The main mylonitization event was during the D2 deformational event, following coaxial refolding, synchronous to retrograde metamorphism of amphibolite to greenschist facies in the Late Cretaceous–Paleocene, and before D3 folding and related mylonitization. We documented the systematic changes in the orientations of D2 linear fabrics especially stretching lineations and superimposition relations of structures. It is concluded that the dextral strike-slip and dip-slip shear zones were coeval kinematic domains of partitioned dextral transpression. The shallowly dipping reverse and strike-slip shear zones are compatible with partitioning in a very inclined transpressional model. Fabric relations reflect that the top-to-the NE normal shear zones were not produced during deformation partitioning of inclined dextral transpression. The Late Cretaceous–Paleocene strain partitioning was followed by later N–S shortening and NE-extension in the north Golpaygan area.  相似文献   

14.
15.
《International Geology Review》2012,54(12):1523-1540
The Sanandaj–Sirjan Zone (SSZ) of western Iran is characterized by numerous granitoids of mainly calc-alkaline affinities. Several leucogranite and monzonite bodies crop out in the eastern Sanandaj. Whole-rock Rb–Sr isochrons demonstrate that the Mobarak Abad monzonite (MAM) formed in two phases at 185 and 131 Ma. Low 87Sr/86Sr(i) (i represents initial) and high 143Nd/144Nd(i) ratios, resulting in positive ?t Nd, imply that the source magma originated from a depleted mantle; large ion lithophile element (LILE) and light rare earth element (LREE) enrichments imply that slab fluid was involved in the evolution of the parent magma. Geochemical characteristics of the MAM rocks show an affinity with I- and A-type granites, and the positive values of ?t Nd (+2 to +6), confirm that the MAM represents juvenile granite. Therefore, the MAM rocks are different from Himalayan, Hercynian, and Caledonian granites. Based on the geology of granitic host rocks that form the protoliths of metamorphic rocks, it is likely that the mafic part of the MAM formed in an island arc setting on Neo-Tethyan oceanic crust during Early to Middle Jurassic time. Subsequent collision of the island arc with the western part of the SSZ occurred in the Late Jurassic to Early Cretaceous. Metamorphism, accompanied by partial melting, occurred during collision. Finally, leucogranite magmas of the young Mobarak Abad dikes and the Suffi Abad body were generated in this collision zone. This new model suggests a Late Jurassic–Early Cretaceous arc–continental collision before final closing of the Neo-Tethys.  相似文献   

16.
Quaternary basaltic volcanoes are distributed in the northern part of the Sanandaj–Sirjan Zone (N-SSZ). Those in the Ghorveh area of the N-SSZ are characterized by low SiO2, high alkalis, and LILE + LREE enrichment. They also have high Mg numbers (Mg# = 65–70) and high contents of Cr (>300 ppm), Ni (>177 ppm), and TiO2 (>1.5 wt.%), suggesting that they crystallized directly from primary magma. The basalts are classified as high-Nb basalts (HNB), with Nb concentrations greater than 20 ppm. Their 87Sr/86Sr values range from 0.7049 to 0.7053 and their ?0Nd values lie between –0.2 and 1.1. The small negative values of ?0Nd indicate involvement of continental material in the evolution of the source magma in the area. Based on these new chemical and isotopic data and their relationship to the Plio-Quaternary volcanic adakites in northern Ghorveh, we propose that the partial fusion of metasomatized mantle associated with adakitic magma was responsible for generation of the HNB rocks following late Miocene collision of the Arabian and Iranian plates. Rollback of Neotethyan oceanic spreading and mantle plume activity caused a thinning of the northern SSZ lithosphere; furthermore, the S wave tomography model beneath the N-SSZ supports this hypothesized lithospheric thinning. The HNB rocks have close spatial proximity and temporal association with adakites, which were formed by the subduction of young (<25 Ma) oceanic crust. Our discussion clarifies the role of the oceanic slab in the post-collision generation of the HNB basalts in this area. Our data confirm the relationship of the HNB rocks to the subduction zone instead of to the oceanic island basalt (OIB) type magma in extensional zones.  相似文献   

17.
Polymetamorphic units are important constituents of continent–continent collisional orogens, and rift metamorphic assemblages are often overprinted by subsequent metamorphism during subduction and collision. This study reports the metamorphic conditions and evolution of the Dorud–Azna metamorphic units in the central part of the Sanandaj–Sirjan zone (SSZ), Iran. Here, new geothermobarometry results are integrated with 40Ar/39Ar mineral and Th–U–Pb monazite and thorite ages to provide new insight of polyphase metamorphism in the two different basement units of the SSZ, the lower Galeh-Doz orthogneiss and higher Amphibolite-Metagabbro units. In the Amphibolite-Metagabbro unit, staurolite micaschist underwent a prograde P–T evolution from 640 ± 20 °C/6.2 ± 0.8 kbar in garnet cores (M1) to 680 ± 20 °C/7.2 ± 1.0 kbar in garnet rims (M2). Three Th–U–Pb monazite ages of 306 ± 5 Ma, 322 ± 28 Ma and 336 ± 39 Ma from the garnet-micaschists testify the Carboniferous age of M1 metamorphism. In the same unit, the metagabbro records P–T conditions of 4.0 ± 0.8 kbar and 580 ± 50 °C in the (magmatic) amphibole core (Late Carboniferous intrusion) to 7.5 ± 0.7 kbar and 700 ± 20 °C in the amphibole rim indicating a prograde P–T path during subsequent burial (M1). New 40Ar/39Ar dating of white mica from the staurolite micaschist yielded a staircase pattern ranging from 36 ± 12 Ma to 170 ± 2 Ma. This implies polymetamorphism with a minimum Late Jurassic cooling age through the Ar retention temperature of ca. 425 ± 25 °C after M2 metamorphism and a Paleogene low-grade metamorphic overprint (M3), while 40Ar/39Ar white mica dating of garnet micaschist yielded a plateau age of 137.84 ± 0.65 Ma. We therefore interpret the amphibolite-grade metamorphism M2 to have predated 170 Ma and is likely between 180 and 200 Ma. Furthermore, it is overprinted at about 36 Ma under retrogressive low-grade M3 metamorphism (at temperatures of ~350–240 °C) during final shortening and exhumation. In the underlying Galeh-Doz unit, the Panafrican granitic orthogneiss intruded at P–T conditions of 3.2 ± 4 kbar and 700 ± 20 °C, then it was metamorphosed and deformed at 600 ± 50 °C and 2.0 ± 0.8 kbar (metamorphic stage M1) prior to Late Carboniferous intrusion of mafic dikes. 40Ar/39Ar dating of amphibole from the Galeh-Doz orthogneiss gave plateau-like steps between 260 and 270 Ma, representing the age of cooling through ca. 500 °C after the M1 metamorphic event. Interestingly, the results of this study demonstrate polyphase metamorphic histories in both the Galeh-Doz orthogneiss and Amphibolite-Metagabbro units at different P–T conditions and final thick-skinned Paleogene emplacement of these units over the underlying low-grade metamorphic June Complex. Our findings suggest that both units are affected by high-T/low-P Late Carboniferous orogenic metamorphism along with the bimodal magmatism, as result of rifting. We propose that the Early Jurassic amphibolite-grade M2 metamorphism of the SSZ is correlated with the initial subduction of the Neotethyan Ocean. Eventually, the investigated units reflect various stages of a Wilson cycle, from rifting to initiation of the subduction in final plate collision.  相似文献   

18.
The Southeast Anatolian Orogenic Belt (SAOB), the most extensive segment of the Alpine-Himalayan Orogenic Belt, resulted from the northward subduction of the southern branch of the Neotethys oceanic crust beneath the Anatolian micro-plate. We present new whole-rock geochemistry, zircon U–Pb ages, and Lu–Hf isotope data from the stocks and dykes with a length of up to tens of meters belonging to the Keban magmatic rocks, eastern Turkey. These rocks are represented by syenite and quartz monzonite intruded into the Keban metamorphic complex. The geochemistry data indicates that the samples bear mostly metaluminous, variably high alkalines (K2O + Na2O), Ga/Al ratios and zircon saturation temperature, and typically the A-type granite characters. According to the Y/Nb vs Yb/Ta diagram, the Keban magmatic rocks show A1-type geochemical signatures modified by crustal melts. Syenite and quartz monzonite samples from Keban magmatic rocks give zircon U–Pb ages of 77.4 ± 0.34 Ma, 76.3 ± 0.3 Ma and 76.36 ± 0.34 Ma, respectively. On the primitive mantle-normalised trace element patterns, the Keban magmatic rocks show enrichment in large-ion lithophile elements (LILEs) relative to high field strength elements (HFSEs). They are coupled with slightly negative Nb–Ta anomalies. Chondrite-normalised rare earth-element patterns show strong enrichment in LREEs relative to HREEs, a typical A-type granites feature. The zircons have negative εHf(t) values that vary from ?2.68 to ?0.41, and Hf model ages (TDM2) range from 1171.54 to 1329.26 Ma, indicating the enriched lithospheric mantle sources and crustal contribution. The sources and evolution of the alkaline magmas might be related to the post-collisional tectonic setting.  相似文献   

19.
The Ching-dar syncline is located to the west of the city of Birjand, in the east of han. The ca. 500 m thick studied section at the eastern flank of the syncline contains a sequence of almost continuous shallow- marine limestones that exhibit no major sedimentary breaks or evidence for volcanic activity. Skeletal grains consist of large benthic foraminifera and green algae whereas non-skeletal grains are mostly peloids and intraclasts. They were deposited on a shallow-marine carbonate ramp. The limestones have undergone extensive diagenetic processes with varying intensities, the most important of which are micritization, cementation, compaction (chemical and mechanical), internal filling and stylolitization. Chemical analysis of the limestone samples revealed high calcium and low magnesium content. Major and minor element values were used to determine the original carbonate mineralogy of these lime- stones. Petrographic evidence and elemental values indicate that calcite was the original carbonate mineral in the limestones of the Ching-dar syncline. The elemental composition of the Ching-dar car- bonates also demonstrates that they have stabilized in a meteoric phreatic environment. Variation of Sr/ Ca vs. Mn values suggests that diagenetic alteration occurred in an open geochemical system.  相似文献   

20.
《International Geology Review》2012,54(12):1504-1520
This study presents new data relating to the tectonic evolution of the Zhonggang ocean island, within the Mesozoic Banggongco–Nujiang suture zone of northern Tibet, and discusses the implications of these data for the evolution of this region. Thirteen basalt and ten gabbro samples were collected from a sampling transect through this area; these samples have light rare earth element (LREE)-enriched chondrite-normalized REE patterns, and are enriched in highly incompatible elements, yielding primitive-mantle-normalized trace-element variation patterns that are similar to ocean island basalts (OIB). A gabbro dike intruded into basalt of the Zhonggang ocean island and was overlain by basaltic conglomerate, suggesting that this dike was formed after the basalt, but before the basaltic conglomerate. The gabbro dike yields an LA–ICP–MS zircon U–Pb age of 116.2 ± 4.1 Ma, indicating the timing of formation of the Zhonggang ocean island, and suggesting in turn that the Banggongco–Nujiang Neo-Tethys Ocean remained open at this time. These data, combined with the geological history of the region, indicates that the Banggongco–Nujiang Neo-Tethys Ocean opened between the late Permian and the Early Triassic, expanded rapidly between Late Triassic and Middle Jurassic time, and finally closed between the late Early and early Late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号